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I. Spike protein pathogenicity research library (n=375) 
Originally part of the outer coat of the SARS-CoV2 virus, where it functions as a 
“key” to “unlock” (infect) cells, spike proteins are also produced in large 
amounts by the mRNA “vaccines,” triggering a short-lived immune response in 
the form of antibodies. However, a growing body of evidence has shown that the 
spike protein is harmful by itself, including over 370 peer-reviewed scientific 
papers collected in section I.  

 
II. Spike protein and “vaccine” mRNA biodistribution studies (n=61) 

In addition to the pathogenic characteristics of the spike protein antigen, over 60 
peer-reviewed studies have demonstrated that both the “vaccine” mRNA 
encoding for the spike protein antigen and the spike protein itself can penetrate 
distant tissues, causing systemic harms. 

 
III. Spike protein and “vaccine” mRNA persistence studies (n=41) 

Over 40 peer-reviewed studies confirm that “vaccine” mRNA and the resulting 
spike protein antigen persist in the tissues of human vaccine recipients and 
animal test subjects far longer than claimed by public health o]icials; viral spike 
proteins, resulting from natural infection, have been shown to persist even 
longer, bolstering concerns that the identical “vaccine” spike may also last 
longer than anticipated.  

 
IV. Lipid nanoparticle toxicity and allergenicity studies (n=80) 

80 peer-reviewed papers show that ionizable lipid nanoparticles (LNPs) used in 
the experimental mRNA injections are highly inflammatory on their own, 
including their polyethylene glycol (PEG) component, an established cause of 
anaphylaxis (an extreme allergic reaction). 

 
V. COVID-19 “vaccine” immune imprinting library (n=140)  

Immune imprinting, dubbed “original antigenic sin” by Thomas Francis Jr., 
occurs when memory B lymphocytes produced in response to an initial viral 
infection dominate subsequent responses to related viruses. 140 peer-reviewed 
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papers suggest that COVID “vaccines” imprinted the immune systems of 
recipients through exposure to the “wild type” spike protein from the original 
Wuhan strain, shaping their response to subsequent variants in potentially 
harmful ways. 

 
VI. SARS-CoV2 vaccine and viral variant research library (n=70) 

In addition to the pathogenicity, distribution, and long persistence of the 
“vaccine” spike protein, this collection of 70 peer-reviewed papers suggests the 
“vaccines” applied strong selective pressure to the fast-mutating SARS-CoV2 
virus, quickly giving rise to “vaccine”-resistant variants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I. COVID-19 spike protein pathogenicity research library 
 
Compiled by Dr. Martin Wucher, MSC Dent Sc (eq DDS), Erik Sass, et al.  
 
Doi: 10.5281/zenodo.14559644 
 
Version 3, last updated July 1, 2025. Corresponding author: eriksass@gmail.com  
 
Originally part of the outer coat of the SARS-CoV2 virus, where it functions as a “key” to 
“unlock” (infect) cells, spike proteins are also produced in large amounts by the mRNA 
“vaccines,” triggering a short-lived immune response in the form of antibodies. However, a 
growing body of evidence has shown that the spike protein is harmful by itself, 
independent of the rest of the virus.  
 
The following (I. Alphabetical List) collects over 370 (n=375) peer-reviewed scientific 
studies confirming that the spike protein is highly pathogenic on its own; most in vitro 
studies cited here used recombinant spike proteins or spike proteins in pseudoviral 
vectors, and produced pathological effects not reliant on the SARS-CoV2 viral machinery.  
 
The second section (II. Categories) organizes the research into broad categories including 
affected tissues and organ systems, mechanisms, and evidence from clinical pathology. 
Because these areas overlap, many articles appear more than once in the second section. 
 
This compilation originated with Dr. Wucher's contribution to TOXIC SHOT: Facing the 
Dangers of the COVID "Vaccines," (Chapter 4: The Spike Protein Is Harmful By Itself). 
 
 
I. ALPHABETICAL LIST (n=375) 
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2. Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): 

SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, 
Facilitating Entry and Causing Hyperinflammation,” Mediators Inflamm. 2021, 
8874339. doi: https://doi.org/10.1155/2021/8874339 
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vaccine therapy: A hypothesis,” Med. Hypotheses 2023, 171: 111015. doi: 
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Antioxidants 2024, 13, 2: 175. doi: https://doi.org/10.3390/antiox13020175 
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1887–1895. doi: 10.1007/s00277-022-04907-7 

 
9. Albornoz EA et al., “SARS-CoV-2 drives NLRP3 inflammasome activation in 

human microglia through spike protein,” Mol. Psychiatr. 2023, 28: 2878–2893. doi: 
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10. Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and 

Potential Therapies,” Infection 2021, 49, 5: 855–876. doi: 
https://doi.org/10.1007/s15010-021-01677-8 
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12. Alves V et al., “SARS-CoV-2 Spike protein alters microglial purinergic signaling 

Front. Immunol. 2023, 14:  1158460. doi: 10.3389/fimmu.2023.1158460  
 

13. Anft M et al., “E]ect of immunoadsorption on clinical presentation and immune 
alterations in COVID-19–induced and/or aggravated ME/CFS,” Mol. Ther. 2025, 33, 
6: 2886-2899. doi: 10.1016/j.ymthe.2025.01.007 

 
14. Angeli F et al., “COVID-19, vaccines and deficiency of ACE2 and other 

angiotensinases. Closing the loop on the ‘Spike e]ect’,” Eur J. Intern. Med. 2022, 
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41. Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 

antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2 
antigen persistence,” Front. Med. 2022, 9 (Sec. Infectious Diseases – Surveillance). 
doi: https://doi.org/10.3389/fmed.2022.1003103 

 
42. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by 

zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: 
e149633. doi: https://doi.org/10.1172/JCI149633 

 
43. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of 

SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, 
ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46: 
102099. doi: https://doi.org/10.1016/j.redox.2021.102099 

 
44. Yu J et al., “Direct activation of the alternative complement pathway by SARS-CoV-2 

spike proteins is blocked by factor D inhibition,” Blood 2020, 136, 18: 2080–2089. 
doi: https://doi.org/10.1182/blood.2020008248 
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HH. Toll-like receptors (TLRs) 
 

1. Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-
CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry 
and Causing Hyperinflammation,” Mediators Inflamm. 2021: 8874339. doi: 
https://doi.org/10.1155/2021/8874339 

 
2. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular 

Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,” 
Int. J. Mol. Sci. 2023, 24, 22: 16394. doi: https://doi.org/10.3390/ijms242216394 

 
3. Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in 

SARS-CoV-2 Infection,” Circ. Res. 2023, 132, 3: 290– 305. doi: 
https://doi.org/10.1161/CIRCRESAHA.122.321541 

 
4. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced 

cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 
signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893–
6903. doi: https://doi.org/10.1002/ptr.7302 

 
5. Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term 

Cognitive Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell 
Reports 2023, 42, 3: 112189. doi: https://doi.org/10.1016/j.celrep.2023.112189 

 
6. Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent 

Activation of the NF-κB Pathway,” eLife 2021, 10: e68563. doi: 10.7554/elife.68563 
 

7. Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and 
invasion in a TLR2-dependent manner,” Cancer Commun (London) 2023, 44, 2: 273–
277. doi: https://doi.org/10.1002/cac2.12485 

 
8. Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation 

Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the 
Lower Pathogenicity of Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi: 
https://doi.org/10.3390/ijms23115966   

 
9. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 

sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular 
Innate Immunity). doi: https://doi.org/10.3389/fimmu.2022.996637  

 
10. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory 

response caused by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. 
Rep. 2022, 74: 1315–1325. doi: https://doi.org/10.1007/s43440-022-00398-5 
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11. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARS-

CoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 
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12. Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET 

Formation and Lung Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi: 
https://doi.org/10.1186/s12929-022-00832-z 

 
13. Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules 

through TLR2 in macrophages and monocytes,” J. Immunol. 2021, 206 
(1_supplement): 62.07. doi: https://doi.org/10.4049/jimmunol.206.Supp.62.07 
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inflammation,” J. Immunol. 2022, 208 (1_Supplement): 125.30. doi: 
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15. Zhao Y et al., “SARS-CoV-2 spike protein interacts with and activates TLR4,” Cell 
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II.  Spike protein and “vaccine” mRNA biodistribution studies 
 
Compiled by Dr. Martin Wucher, MSC Dent Sc (eq DDS), Erik Sass, et al.  
 
Last updated July 1, 2025. Corresponding author: eriksass@gmail.com 
 
Biodistribution studies show that both the “vaccine” mRNA encoding for the spike protein 
antigen and the spike protein itself can penetrate distant tissues, causing systemic harms 
to a variety of organs and organ systems, including the placenta. The following research 
collection presents over 60 peer-reviewed studies (n=61) documenting the wide 
distribution of “vaccine” mRNA and the associated spike protein throughout human beings 
and animal test subjects.  
 
These articles confirm that “vaccine” mRNA and spike protein can reach tissues and 
organs including the heart, liver, brain, lungs, placenta, umbilical cord, breast milk, lymph 
nodes, thymus, kidneys, spleen, bladder, large intestine, eyes, adrenal glands, ovaries, 
testes, bone marrow, skin, lacrimal glands, and appendix. Additionally, a small number of 
studies demonstrate the viral spike protein’s ability to cross important physiological 
barriers independently of the rest of the virus, suggesting identical “vaccine”-derived spike 
protein can do the same. 
 
A chart below summarizes the findings of dozens of studies collected in this section II, 
showing which “vaccine” components and products were examined (mRNA, LNP, and/or 
spike protein) and key tissues and organs affected. Taken together with evidence of the 
spike protein’s pathogenicity, these findings suggest that the mRNA “vaccines” can 
distribute harmful, long-lasting spike protein uncontrollably throughout the body, causing 
injuries and death by various means. 
 
This compilation originated with Dr. Wucher's contribution to TOXIC SHOT: Facing the 
Dangers of the COVID "Vaccines," (Chapter 4: The Spike Protein Is Harmful By Itself). 
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ANNOTATED REFERENCES (n=61) 
 

1. Australian Government Department of Health—Therapeutic Goods Administration, 
“Nonclinical evaluation of BNT162b2 [mRNA] COVID-19 vaccine (COMIRNATY),” 
2021, Available from: https://www.tga.gov.au/sites/default/files/foi-2389-06.pdf 
• “Lipid nanoparticle formulation… and encapsulation e]iciency similar to LNP in 

BNT162b2 vaccine… distribution mainly into liver, adrenal glands, spleen and 
ovaries over 48 h.” 

 
2. Bansal S et al., “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are 

Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of 
Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines,” J. 
Immunol. 2021, 207, 10: 2405–2410. doi: 10.4049/jimmunol.2100637 
• plasma 

 
3. Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An 

Endomyocardial Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23, 13: 6940. 
doi: https://doi.org/10.3390/ijms23136940 
• “The expression of SARS-CoV-2 spike protein within the heart and the 

dominance of CD4+ lymphocytic infiltrates indicate an autoimmunological 
response to the vaccination.” 

 
4. Blizard GS et al., “Monitoring mRNA vaccine antigen expression in vivo using 

PET/CT,” Nat. Commun. 2025, 16: 2234. doi: 10.1038/s41467-025-57446-w 
• lymph nodes, liver, spleen 

 
5. Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted 

recombinant spike proteins in human tissues and circulation after COVID-19 
vaccination,” Pharmacol Res Perspect 2024, 12, 3: e1218. doi:  10.1002/prp2.1218 
• “… clinical studies now report that modified SARS-CoV-2 mRNA routinely persist 

up to a month from injection and can be detected in cardiac and skeletal muscle 
at sites of inflammation and fibrosis, while the recombinant spike protein may 
persist a little over half a year in blood.” 

 
6. Brady M et al., “Spike protein multiorgan tropism suppressed by antibodies targeting 

SARS-CoV-2,” Comm. Biol. 2021, 4, 1318. doi: 10.1038/s42003-021-02856-x 
• After intravenous injection, “SP had a body-wide biodistribution, slow regional 

elimination, except for the liver, which showed an accumulation, and di]erential 
organ uptake. SP uptake was highest for the lungs and this was followed by the 
kidney, heart, and liver, but lowest in the brain.” 
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7. Brogna C et al., “Detection of recombinant Spike protein in the blood of individuals 
vaccinated against SARS-CoV-2: Possible molecular mechanisms,” Proteonomics 
Clin App. 2023, 17, 6. doi: 10.1002/prca.202300048 
• plasma 

 
8. Broudic K et al., “Nonclinical safety assessment of an mRNA Covid-19 vaccine 

candidate following repeated administrations and biodistribution,” J. Appl. Toxicol. 
2024, 44, 3: 371-390. doi: https://doi.org/10.1002/jat.4548 
• lymph nodes, spleen, liver, lacrimal glands, brain, thymus, lungs, adrenal 

glands, bone marrow, kidneys, testes, ovaries 
 

9. Burkhardt A, “Pathology Conference: Vaccine-Induced Spike Protein Production in 
the Brain, Organs etc., now Proven.” Report24.news, 2022, available 
online: https://report24.news/pathologie-konferenz-impfinduzierte-spike-
produktion-in-gehirn-u-a-organen-nun-erwiesen/ 
• Heart, brain, liver, appendix, bronchi, skin, spleen 

 
10. Buzhdygan TP et al., “The SARS-CoV-2 spike protein alters barrier function in 2D 

static and 3D microfluidic in-vitro models of the human blood–brain barrier,” 
Neurobiol Dis. 2020m 146: 105131. doi: 10.1016/j.nbd.2020.105131 

 
11. Castruita JAS et al., “SARS-CoV-2 spike mRNA vaccine sequences circulate in blood 

up to 28 days after COVID-19 vaccination,” APMIS 2023, 131: 128–132. doi: 
https://doi.org/10.1111/apm.13294 
• plasma 

 
12. Chen JC et al., “mRNA-1273 is placenta-permeable and immunogenic in the fetus,” 

Mol. Ther. Nucleic Acids 2025, 36, 1: 102489. doi: 10.1016/j.omtn.2025.102489 
• placenta, fetus. “Although spike mRNA in fetal circulation faded away within 4–6 

h, it could accumulate in fetal tissues, mainly the liver and get translated into 
spike protein.” 

 
13. Cosentino M and Franca Marino, “Understanding the Pharmacology of COVID- 19 

mRNA Vaccines: Playing Dice with the Spike?” Int. J. Mol. Sci. 2022, 23, 18: 10881. 
doi: https://doi.org/10.3390/ijms231810881 
• “Taken as a whole, evidence strongly supports the possible link between 

inappropriate expression of S protein in sensitive tissues and subsequent tissue 
damage.” 

 
14. DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via 

RhoA Activation,” J Neuroimmune Pharmacol. 2021, 16, 4:722-728. Doi: 
https://doi.org/10.1007/s11481-021-10029-0 
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15. Di J et al., “Biodistribution and Non-linear Gene Expression of mRNA LNPs A]ected 
by Delivery Route and Particle Size,” Pharm Res 2022, 39: 105-114. doi: 
https://doi.org/10.1007/s11095-022-03166-5 
• liver, spleen, muscle, and inguinal lymph nodes 

 
16. European Medicines Agency, Assessment Report, available 

online: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-
epar-public-assessment-report_en.pdf 
• “Synthetic mRNAs encapsulated in LNPs can reach many organs, such as the 

spleen, heart, kidneys, lungs and brain. The mRNAs were found in the ovaries 
and the testicles in small quantities, during the biodistribution studies of this 
vaccine after 9 days.” 

 
17. European Medicines Agency, COVID-19 Vaccine Moderna, available 

online: https://www.ema.europa.eu/en/documents/assessment-report/spikevax-
previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf 
• Vaccine mRNAs are detectable in brain, heart, lungs, eyes, gonads. 

 
18. Fertig TE et al., “Beyond the injection site: identifying the cellular targets of mRNA 

vaccines,” J Cell Ident 2024, 3, 1. doi: 10.47570/joci.2024.004 
• Overview of studies showing wide distribution throughout the body. 

 
19. Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post 

Vaccination,” Biomedicines 2022, 10, 7: 1538. doi: 10.3390/biomedicines10071538 
• plasma 

 
20. Hanna N et al. “Biodistribution of mRNA COVID-19 vaccines in human breast milk,” 

eBioMedicine 2023, 96, 104800. doi: 10.1016/j.ebiom.2023.104800 
• “Of 13 lactating women receiving the vaccine (20 exposures), trace mRNA 

amounts were detected in 10 exposures up to 45 h post-vaccination. “ 
 

21. Hassett KJ et al., “mRNA vaccine tra]icking and resulting protein expression after 
intramuscular administration,” Mol. Ther. Nucleic Acids 2024, 35, 1: 102083. doi: 
10.1016/j.omtn.2023.102083 
• plasma, lymph nodes, liver, spleen 

 
22. Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced 

myocarditis,” ESC Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680 
• “COVID-19 vaccine Spike protein is produced in the body for an uncontrolled 

duration and in unknown quantity resulting in deleterious e]ects, especially on 
the heart, explaining the cardiovascular deaths seen in our study without 
evidence of other organ system involvement.” 
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23. Judicial Watch, “JW v HHS FDA Pfizer BioNTech Vaccine prod 3 02418,” March 21, 
2022, https://www.judicialwatch.org/documents/jw-v-hhs-fda-pfizer-biontech-
vaccine-prod-3-02418/ 
• LNP biodistribution to liver, spleen, adrenal glands, ovaries. “Outside the 

injection site, low levels of radioactivity were detected in most tissues, with the 
greatest levels in plasma observed 1-4 hours post-dose.” 

 
24. Kammala AK et al., “In vitro mRNA-S maternal vaccination induced altered immune 

regulation at the maternal-fetal interface,” Am. J. Reprod. Immunol. 2024, 91, 5: 
e13861. doi: https://doi.org/10.1111/aji.13861 
• “… our study indicates that mRNA-S-based maternal vaccination during 

pregnancy may influence the maternal-fetal interface's COVID-19 interaction 
and immune regulation. Further investigation is warranted to assess safety and 
implications.” 

 
25. Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease 

Messenger Ribonucleic Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325. 
doi: https://doi.org/10.2169/internalmedicine.9800-22 
• “… positive immunostaining for severe acute respiratory syndrome coronavirus 2 

spike protein and C4d in the myocardium." 
 

26. Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine 
in Humans,” ACS Nano 2024, 18, 39: 27077-27089. doi: 10.1021/acsnano.4c11652 
• “The similar kinetics of intact mRNA and the ionizable lipid in blood and the slow 

degradation of the mRNA suggest that mRNA lipid nanoparticles remain intact 
and travel from injection sites or lymph nodes into the bloodstream within 4 h 
postvaccination. The rapid dissemination of mRNA lipid nanoparticles in blood 
found in our study is consistent with the recent findings on the detection of 
mRNA in breast milk at 3−45 h postvaccination.” 

 
27. Krauson AM et al., “Duration of SARS-CoV-2 mRNA vaccine persistence and factors 

associated with cardiac involvement in recently vaccinated patients,” npj Vaccines, 
8, 141. doi: https://doi.org/10.1038/s41541-023-00742-7 
• axillary lymph nodes, myocardium 

 
28. Kwon MH et al., “The Pharmacokinetics of mRNA Vaccine Carrier using Carbon-14,” 

J. Radiopharm. Mol. Probes 2024, 10, 1: 73-81. doi: 10.22643/JRMP.2024.10.1.73 
• serum, lymph nodes, muscle, spleen, liver, testis, ovary, thymus, lung, brain 

 
29. Lehmann KJ, “SARS-CoV-2-Spike Interactions with the Renin-Angiotensin-

Aldosterone System – Consequences of Adverse Reactions of Vaccination,” J Biol 
Today’s World 2023, 12/4: 001-013. doi: https://doi.org/10.31219/osf.io/27g5h 
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• “The presented analysis provides a substantial body of evidence for the causal 
involvement of Ang II/activated RAAS in eliciting adverse reactions after 
application of spike-inducing vaccine. As an example, some serious organ 
disturbances or adverse reactions, in which the connection with an activated 
RAAS is obvious (cardiovascular and blood coagulation disorders, disorders of 
the nervous and muscular system, inflammatory reactions, auto-
immunological, vascular and renal disorders), are presented and discussed…” 

 
30. Li C. et al., “Intravenous Injection of Coronavirus Disease 2019 (COVID-19) MRNA 

Vaccine Can Induce Acute Myopericarditis in Mouse Model,” Clin. Infect. 
Dis. 2022, 74, 11: 1933-1950. doi: https://doi.org/10.1093/cid/ciab707 
• “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antigen 

expression by immunostaining was occasionally found in infiltrating immune 
cells of the heart or injection site, in cardiomyocytes and intracardiac vascular 
endothelial cells, but not skeletal myocytes.” 

 
31. Li C et al., “Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech 

BNT162b2 vaccine,” Nature Immunol. 2022, 23: 543-555. doi: 
https://doi.org/10.1038/s41590-022-01163-9 
• spleen, muscle, liver, lung and non-dLNs 

 
32. Lin X et al., “Transplacental transmission of the COVID-19 vaccine messenger RNA: 

evidence from placental, maternal, and cord blood analyses postvaccination,” Am J 
Obstet Gynecol 2024, 92, 4: e13934. doi: https://doi.org/10.1111/aji.13934 
• “The vaccine mRNA was detected in the 2 placentas evaluated using 

quantitative ddPCR and ISH… Using WES, the spike protein expression was 
detected in the placenta of patient 2, but not in patient 1… Furthermore, the 
vaccine mRNA was detected in the umbilical cord and maternal blood of patient 
1 using ddPCR.” 

 
33. Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the 

interaction between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi: 
https://doi.org/10.3389/fimmu.2024.1303356 

 
34. Ma L et al., “6.3. FDA-Approved mRNA Vaccines: Interpretation of Preclinical 

Pharmacokinetic (PK) Data,” in Drug Metabolism and Pharmacokinetics: Frontiers, 
Strategies, and Applications, ed. L Shen et al., Wiley & Sons, Hoboken, 2025. ISBN: 
978-1-394-30013-6 
• Plasma, lymph nodes, liver, adrenal glands, spleen, ovaries, brain, lung, eye, 

testes, kidney 
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35. Magen E et al., “Clinical and Molecular Characterization of a Rare Case of 
BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis,” Vaccines 2022, 10, 7: 
1135. doi: https://doi.org/10.3390/vaccines10071135 
• “… although the BNT162b2 vaccine mRNA was not properly expressed in blood 

cells seven days after receipt of the first vaccine dose, it was still expressed in 
muscle tissue distant from the vaccination site one month after receipt of the 
first vaccine dose.” 

 
36. Magro C et al., “The histologic and molecular correlates of COVID-19 vaccine-

induced changes in the skin,” Clin. Dermatol. 2021, 39, 6: 966-984. doi: 
https://doi.org/10.1016/j.clindermatol.2021.07.011 
• Spike detected in deep dermis or blood vessels serving skin in 10/34 cases. 

 
37. Magro C et al., “Disruption of the blood-brain barrier is correlated with spike 

endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19. 
Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of 
patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta 
Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y 

 
38. Martin-Navarro L et al., “In situ detection of vaccine mRNA in the cytoplasm of 

hepatocytes during COVID-19 vaccine-related hepatitis,” J. Hepatol. 2023, 78, 1: 
e20-e22. doi: 10.1016/j.jhep.2022.08.039 
• “… our results suggest that lipid nanoparticles bearing mRNA molecules 

encoding SARS-CoV-2 proteins can reach hepatocytes under certain 
circumstances and deliver mRNA in high quantities that could be used by the 
translational machinery of the cells to produce spike.” 

 
39. Maugeri M et al.. “Linkage between endosomal escape of LNP-mRNA and loading 

into EVs for transport to other cells,” Nat Commun 2019, 10: 4333. doi: 
https://doi.org/10.1038/s41467-019-12275-6 
• “The present study shows that LNP components (mRNA and ionizable lipids) are 

partly incorporated into endo-EVs…  these endo-EVs protect exogenous mRNA 
during in vivo transport to organs…” 

 
40. Medicines & Healthcare Products Regulatory Agency, “Summary of the Public 

Assessment Report for Pfizer/BioNTech COVID-19 Vaccine,” available 
online: https://www.gov.uk/government/publications/regulatory-approval-of-pfizer-
biontech-vaccine-for-covid-19/summary-public-assessment-report-for-
pfizerbiontech-covid-19-vaccine 
• liver 
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41. Ministry of Health, Labour and Welfare of Japan, “SARS-CoV-2 mRNA Vaccine 
(BNT162, PF-07302048): Summary Text of the Pharmacokinetic Study,” available 
online: https://www.docdroid.net/xq0Z8B0/pfizer-report-japanese-government-pdf 
• bladder, bone, bone marrow, brain, eyes, heart, kidneys, large intestine, liver, 

lung  
 

42. Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after 
BNT162b2 mRNA Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. 
doi: https://doi.org/10.3390/vaccines10101651 
• “Only spike protein but no nucleocapsid protein could be detected within the 

foci of inflammation in both the brain and the heart, particularly in the 
endothelial cells of small blood vessels.” 

 
43. Nyein CM et al., “Severe de novo liver injury after Moderna vaccination – not always 

autoimmune hepatitis,” J. Hepatol. 2022, 77, 2: 556-558. doi: 
10.1016/j.jhep.2022.03.041 
• “Unique to this case is the demonstration of anti-SARS-CoV-2 spike protein 

within the liver parenchyma.” 
 

44. Ogata AF et al., “Circulating Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine 
Recipients,” Clin. Infect. Dis. 2022, 75, 4: 715–718. doi: 10.1093/cid/ciab465 
• “Here we provide evidence that circulating SARS-CoV-2 proteins are present in 

the plasma of participants vaccinated with the mRNA-1273 vaccine.” 
 

45. Ota N et al., “Expression of SARS-CoV-2 spike protein in cerebral Arteries: 
Implications for hemorrhagic stroke Post-mRNA vaccination,” J. Clin. Neurosci. 
2025, 136: 111223. doi: https://doi.org/10.1016/j.jocn.2025.111223 

 
46. Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence 

from Human and Animal Studies,” Biomedicines 2024, 12, 1: 59. 
doi: https://doi.org/10.3390/biomedicines12010059 
•  “Intravenous injection led to the detection of fluorescent proteins in the liver, 

spleen, lungs, and lymph nodes.” 
 

47. Petrovszki D et al., “Penetration of the SARS-CoV-2 Spike Protein across the Blood-
Brain Barrier, as Revealed by a Combination of a Human Cell Culture Model System 
and Optical Biosensing,” Biomedicines 2022, 10, 1: 188. doi: 
https://doi.org/10.3390/biomedicines10010188 

 
48. Rhea EM et al., “The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in 

mice,” Nature Neuroscience 2021, 24, 3: 368-378. doi: 10.1038/s41593-020-00771-
8 
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49. Röltgen K et al., “Immune imprinting, breadth of variant recognition, and germinal 

center response in human SARS-CoV-2 infection and vaccination,” Cell, 2022, 185, 
6: 1025-1040. doi: 10.1016/j.cell.2022.01.018 
• “mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike 

antigen up to 8 weeks postvaccination in some cases.” 
 

50. Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the 
COVID-19 vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi: 
https://doi.org/10.1007/s43440-022-00361-4 
• “As shown in vivo in mice, intravenous injection of the BNT162b2 vaccine 

(BioNTech/Pfizer, Germany/USA) resulted in histopathological changes 
characteristic for myopericarditis… the amount of mRNA encoding SARS-CoV-2 
spike protein and its subsequent myocardial expression was significantly higher 
in heart tissue when compared to the animals receiving the intramuscular 
injection.” 

 
51. Sandelius A et al., “Biodistribution of lipid nanoparticle, eGFP mRNA and translated 

protein following subcutaneous administration in mouse,” Bioanalysis 2024, 16, 14: 
721-733. doi: https://doi.org/10.1080/17576180.2024.2360361 
• skin, spleen, liver, kidney 

 
52. Sano H et al., “A case of persistent, confluent maculopapular erythema following a 

COVID-19 mRNA vaccination is possibly associated with the intralesional spike 
protein expressed by vascular endothelial cells and eccrine glands in the deep 
dermis,” J Dermatol 2023, 50, 9: 1208-1212. doi: 10.1111/1346-8138.16816 
• “Surprisingly, immunohistochemical staining of the lesion 100 days after the 

disease onset revealed the COVID-19 spike protein expressed by vascular 
endothelial cells and eccrine glands in the deep dermis. As she had no episode 
of COVID-19 infection, it is highly likely that the spike protein was derived from 
the mRNA vaccine and it might be the cause of the development and 
persistence of her skin lesions.” 

 
53. Sano S et al., “SARS-CoV-2 spike protein found in the acrosyringium and eccrine 

gland of repetitive miliaria-like lesions in a woman following mRNA vaccination,” J. 
Dermatol. 2024, 51, 9: e293-e295. doi: https://doi.org/10.1111/1346-8138.17204 
• cutaneous 

 
54. Sattar S Et al., “Nuclear translocation of spike mRNA and protein is a novel feature 

of SARS-CoV-2,” 2023 Front. Microbiol. 2023, 14 (Sec. Virology). doi: 
https://doi.org/10.3389/fmicb.2023.1073789 
• “Although the S protein is a surface transmembrane type 1 glycoprotein, it has 

been predicted to be translocated into the nucleus due to the novel nuclear 
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localization signal (NLS) ‘PRRARSV,’ which is absent from the S protein of other 
coronaviruses. Indeed, S proteins translocate into the nucleus in SARS-CoV-2-
infected cells. S mRNAs also translocate into the nucleus. S mRNA colocalizes 
with S protein, aiding the nuclear translocation of S mRNA.”  

 
55. Schreckenberg R et al., “Cardiac side e]ects of RNA-based SARS-CoV-2 vaccines: 

Hidden cardiotoxic e]ects of mRNA-1273 and BNT162b2 on ventricular myocyte 
function and structure,” Br. J. Pharmacol. 2024, 181, 3: 345-361. doi: 
https://doi.org/10.1111/bph.16262 
• “After 48 h, expression of the encoded spike protein was detected in ventricular 

cardiomyocytes for both mRNAs… mRNA-1273 induced arrhythmic as well as 
completely irregular contractions associated with irregular as well as localized 
calcium transients, which provide indications of significant dysfunction of the 
cardiac ryanodine receptor (RyR2)… BNT162b2 increased cardiomyocyte 
contraction via significantly increased protein kinase A (PKA) activity…” 

 
56. Stern B et al., “SARS-CoV-2 spike protein induces endothelial dysfunction in 3D 

engineered vascular networks,” J. Biomed. Mater. Res. A. 2023, 112, 4: 524-533. doi: 
https://doi.org/10.1002/jbm.a.37543 

 
57. Suprewicz L et al., “Blood-brain barrier function in response to SARS-CoV-2 and its 

spike protein,” Neurol. Neurochir Pol. 2023, 57: 14–25. doi: 
10.5603/PJNNS.a2023.0014 
• “… S1, S1RBD, and S2 subunits exhibit pro-inflammatory e]ects, resulting in 

increased BBB permeability via damage to tight junctions (TJs)…” 
 

58. Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased 
permeability of the blood-brain barrier induced by the spike protein of the SARS-
CoV-2 virus,” J Neuroinflamm. 2022, 19, 1: 282. doi: 10.1186/s12974-022-02642-4 

 
59. Takanashi A et al., “Delivery and Expression of mRNA in the Secondary Lymphoid 

Organs Drive Immune Responses to Lipid Nanoparticle-mRNA Vaccines after 
Intramuscular Injection,” Mol. Pharmaceutics 2023, 20, 8: 3876–3885. doi: 
https://doi.org/10.1021/acs.molpharmaceut.2c01024 
• “Our results suggest that the mRNA delivery and transfection of secondary 

lymphatic organs, not LNP adjuvancy or RNA expression in muscle, are the main 
drivers for adaptive immune response in mice.” 

 
60. Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA 

COVID-19 vaccination was associated with the presence of encoded spike protein 
in the lesion,” J. Cutan. Immunol. Allergy 2022, 6, 1: 18-23. doi: 10.1002/cia2.12278 
• Spike expressed in vesicular keratinocytes and endothelial cells in the dermis. 
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61. Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA 
Vaccine Myocarditis,” Circulation 2023, 147, 11. doi: 
10.1161/CIRCULATIONAHA.122.061025 
• Plasma 
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III.  Spike protein and vaccine mRNA persistence studies 
 
Compiled by Dr. Martin Wucher, MSC Dent Sc (eq DDS), Erik Sass, et al.  
 
Last updated July 1, 2025. Corresponding author: eriksass@gmail.com 
 
Dozens of studies collected here (n=41) demonstrate that both “vaccine” mRNA, and the 
spike protein antigen it encodes, persist in the tissues of human vaccine recipients and 
animal test subjects far longer than claimed by public health officials: up to eight weeks in 
the case of mRNA (Röltgen K et al.) and up to six months for spike protein (Brogna C et al.). 
Numerous studies have also shown that viral spike proteins can persist even longer in 
individuals recovered from SARS CoV2 infection or with “long COVID,” with spike protein 
detected 15 months (Patterson BK et al.) to two years (Fraser ME at al.) after infection. 
Long-lasting viral spike proteins have frequently been detected in the absence of viable 
virus, as reflected in negative PCR tests and RNA assays, suggesting identical “vaccine” 
spike proteins may also persist for a year or more.  
 
This compilation originated with Dr. Wucher's contribution to TOXIC SHOT: Facing the 
Dangers of the COVID "Vaccines," (Chapter 4: The Spike Protein Is Harmful By Itself). 
 
 
ANNOTATED REFERENCES (n=41) 
 

1. Alghmadi A et al., “Altered Circulating Cytokine Profile Among mRNA-Vaccinated 
Young Adults: A Year-Long Follow-Up Study,” Immun. Inflamm. Dis. 2025, 13, 4: 
e70194. doi: https://doi.org/10.1002/iid3.70194 
• “The findings of this study indicated that COVID-19 vaccination resulted in an 

increase in cytokine levels, which signifies the persistence of the humoral 
immune response to messenger RNA (mRNA) vaccines. This e]ect may be 
attributed to the persistent production of spike protein and highly inflammatory 
nature of mRNA-lipid nanoparticle.” 

 
2. Bansal S, et al. “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are 

Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of 
Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines,” J. 
Immunol. 2021, 207, 10: 2405–2410. doi: 10.4049/jimmunol.2100637 
• circulating exosomes with spike protein detected four months after vaccination. 

 
3. Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted 

recombinant spike proteins in human tissues and circulation after COVID-19 
vaccination,” Pharmacol Res Perspect 2024, 12, 3: e1218. doi: 10.1002/prp2.1218 
• “… clinical studies now report that modified SARS-CoV-2 mRNA routinely persist 

up to a month from injection and can be detected in cardiac and skeletal muscle 
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at sites of inflammation and fibrosis, while the recombinant spike protein may 
persist a little over half a year in blood.” 

 
4. Brogna C et al., “Detection of recombinant Spike protein in the blood of individuals 

vaccinated against SARS-CoV-2: Possible molecular mechanisms,” Proteonomics 
Clin App. 2023, 17, 6. doi: 10.1002/prca.202300048 
• “The minimum and maximum time at which PP-Spike was detected after 

vaccination was 69 and 187 days, respectively.” 
 

5. Castruita JAS et al., “SARS-CoV-2 spike mRNA vaccine sequences circulate in blood 
up to 28 days after COVID-19 vaccination,” APMIS 2023, 131: 128–132. doi: 
https://doi.org/10.1111/apm.13294 

 
6. Cheung CCL et al., “Residual SARS-CoV-2 viral antigens detected in GI and hepatic 

tissues from five recovered patients with COVID-19,” Gut 2022, 71, 1: 226–9. doi: 
https://doi.org/10.1136/gutjnl-2021-324280 
• Persistence of residual SARS-CoV-2 antigens up to 180 days in the colon, 

appendix, ileum, haemorrhoid, liver, gallbladder and lymph nodes; unable to 
detect viral RNA in many patients’ tissues. 

 
7. Colmenero I et al., “SARS-CoV-2 endothelial infection causes COVID-19 chilblains: 

histopathological, immunohistochemical and ultrastructural study of seven 
paediatric cases,” Br J Dermatol. 2020, 183: 729-737. doi: 10.1111/bjd.19327 
• Spike protein detected in lesions up to 30 days after onset of acute infection. 

SARS-CoV-2 PCR from nasopharyngeal and oropharyngeal swabs was negative 
in all cases tested (six of six). 

 
8. Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked 

Spike protein in individuals with postacute sequelae of COVID-19,” J Med. Virol. 
2023, 95, 2: e28568. doi: https://doi.org/10.1002/jmv.28568 
• “… our findings suggest that Spike and/or viral RNA fragments persist in the 

recovered COVID-19 patients with PASC up to 1 year or longer after acute SARS-
CoV-2 infection.” Further, “this is the first report to show that part of the 
circulating Spike is linked to extracellular vesicles without any presence of viral 
RNA in these vesicles.” 

 
9. European Medicines Agency, Assessment Report, available 

online: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-
epar-public-assessment-report_en.pdf 
• “Synthetic mRNAs encapsulated in LNPs can reach many organs, such as the 

spleen, heart, kidneys, lungs and brain. The mRNAs were found in the ovaries 
and the testicles in small quantities, during the biodistribution studies of this 
vaccine after 9 days…” 
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10. Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post 

Vaccination,” Biomedicines 2022, 10, 7: 1538. doi: 10.3390/biomedicines10071538 
 

11. Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of 
Patients With Post-COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024, 
209: A4193. doi: 10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193 
• “Spike protein and RNA persists in BAL from patients with post-COVID lung 

disease up to two years after acute infection.” 
 

12. Gaebler C et al., “Evolution of antibody immunity to SARS-CoV-2,” Nature 2021, 591: 
639-644. doi: https://doi.org/10.1038/s41586-021-03207-w 
• Gastrointestinal tract biopsies suggest spike antigen persisted in the small 

bowel in 7 of 14 individuals who were asymptomatic at 4 months after 
infection… Clinically approved nasopharyngeal-swab PCR assays were negative 
in all 14 individuals at the time of biopsy. However, biopsy samples from 3 of the 
14 participants produced PCR amplicons that were sequence-verified as SARS-
CoV-2. In addition, viral RNA was detected by in situ hybridization in biopsy 
samples from the two participants who were tested. 

 
13. George S et al., “Evidence for SARS-CoV-2 Spike Protein in the Urine of COVID-19 

Patients,” Kidney360 2021, 2, 6: 924-936. doi: 10.34067/KID.0002172021 
• “The SARS-CoV-2 spike protein could be detected in urine from day 1 to day 44 

post–hospital admission… Of the 23 adults who were Ur-S+, only one individual 
showed detectable viral RNA in urine.” 

 
14. Goh D et al., “Case report: Persistence of residual antigen and RNA of the SARS-

CoV-2 virus in tissues of two patients with long COVID,” Front. Immunol. 2022, 13 
(Sec. Viral Immunology). doi: https://doi.org/10.3389/fimmu.2022.939989 
• Persistence of spike protein 426 days after symptom onset; residual viral RNA 

also detected. 
 

15. Hano S et al., “A case of persistent, confluent maculopapular erythema following a 
COVID-19 mRNA vaccination is possibly associated with the intralesional spike 
protein expressed by vascular endothelial cells and eccrine glands in the deep 
dermis,” J Dermatol 2023, 50, 9: 1208-1212. doi: 10.1111/1346-8138.16816 
• “Surprisingly, immunohistochemical staining of the lesion 100 days after the 

disease onset revealed the COVID-19 spike protein expressed by vascular 
endothelial cells and eccrine glands in the deep dermis. As she had no episode 
of COVID-19 infection, it is highly likely that the spike protein was derived from 
the mRNA vaccine and it might be the cause of the development and 
persistence of her skin lesions.” 
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16. Karaba AH et al., “Detectable plasma severe acute respiratory syndrome 
coronavirus 2 spike antigen is associated with poor antibody response following 
third messenger RNA vaccination in kidney transplant recipients,” Transpl Infect Dis 
2024, 26, 3: e14281. doi: https://doi.org/10.1111/tid.14281 
• Spike protein detectable in 3/16 (19%) participants 14 days after vaccination. 

 
17. Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease 

Messenger Ribonucleic Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325. 
doi: https://doi.org/10.2169/internalmedicine.9800-22 
• “… positive immunostaining for severe acute respiratory syndrome coronavirus 2 

spike protein and C4d in the myocardium." 
 

18. Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine 
in Humans,” ACS Nano 2024, 18, 39: 27077-27089. doi: 10.1021/acsnano.4c11652 
• “The vaccine mRNA was detectable and quantifiable up to 14–15 days 

postvaccination in 37% of subjects.” 
 

19. Krauson AM et al., “Duration of SARS-CoV-2 mRNA vaccine persistence and factors 
associated with cardiac involvement in recently vaccinated patients,” npj Vaccines, 
8, 141. doi: https://doi.org/10.1038/s41541-023-00742-7 
•  “Vaccine was detected in the axillary lymph nodes in the majority of patients 

dying within 30 days of vaccination… Vaccine was detected in the myocardium 
in a subset of patients vaccinated within 30 days of death.” 

 
20. Li C et al., “Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech 

BNT162b2 vaccine,” Nature Immunol. 2022, 23: 543-555. doi: 
https://doi.org/10.1038/s41590-022-01163-9 
• “mRNA could be detected in the spleen, and the spike protein itself was 

detectable in the serum, for up to 7 d after immunization.” 
 

21. Ma L et al., “6.3. FDA-Approved mRNA Vaccines: Interpretation of Preclinical 
Pharmacokinetic (PK) Data,” in Drug Metabolism and Pharmacokinetics: Frontiers, 
Strategies, and Applications, ed. L Shen et al., Wiley & Sons, Hoboken, 2025. ISBN: 
978-1-394-30013-6 
• “Notably, mRNA may have a persistent distribution at the injection site, lymph 

nodes, and spleen for 2–3 weeks, with a slow elimination rate.” 
 

22. Magen E et al., “Clinical and Molecular Characterization of a Rare Case of 
BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis,” Vaccines 2022, 10, 7: 
1135. doi: https://doi.org/10.3390/vaccines10071135 
• “… although the BNT162b2 vaccine mRNA was not properly expressed in blood 

cells seven days after receipt of the first vaccine dose, it was still expressed in 
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muscle tissue distant from the vaccination site one month after receipt of the 
first vaccine dose.” 

 
23. Mayordomo-Colunga J et al., “SARS-CoV-2 spike protein in intestinal cells of a 

patient with coronavirus disease 2019 multisystem inflammatory syndrome,” J 
Pediatr. 2022, 243: 214-18e215. doi: https://doi.org/10.1016/j.jpeds.2021.11.058 
• Spike protein detected 6 weeks after acute infection. “At presentation, the 

patient tested negative for SARS-CoV-2 by reverse-transcriptase polymerase 
chain reaction on nasopharyngeal swab but positive for serum SARS-CoV-2 
immunoglobulin G.” 

 
24. Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after 

BNT162b2 mRNA Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. 
doi: https://doi.org/10.3390/vaccines10101651 
• Vaccine-induced spike detected on autopsy three weeks after last injection. 

 
25. Ogata AF et al., “Circulating Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine 
Recipients,” Clin. Infect. Dis. 2022, 74, 4: 715-728. doi: 10.1093/cid/ciab465 
• “Spike protein was detectable in 3 of 13 participants an average of 15 days after 

the first injection.” 
 

26. Parcial ALN et al., “SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic, 
Histopathological, and Ultrastructural Changes,” Viruses 2022, 14, 9: 1885. 
doi: https://doi.org/10.3390/v14091885 
• “Three of five placentas presented SARS-CoV-2 RNA detected by RT-PCRq at 

least two to twenty weeks after primary pregnancy infection symptoms, and 
SARS-CoV-2 spike protein was detected in all placentas by immunoperoxidase 
assay.”  

 
27. Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence 

from Human and Animal Studies,” Biomedicines 2024, 12, 1: 59. 
doi: https://doi.org/10.3390/biomedicines12010059 
• (Roltgen K et al) “The amount of the spike antigen declined significantly at 4 

months after the double vaccination but was still detectable.”  
• “Immunohistochemical staining for the spike antigen in the lymph nodes of 

vaccinated patients revealed peak amounts of the spike protein in germinal 
centers 16 days after dose 2, with the spike antigen still detectable on day 60.” 

• (Brogna C et al.) “It is noteworthy that in this study, spike protein was still 
detected in human blood on the 187th day after vaccination.” 

 
28. Patterson BK et al., “Detection of S1 spike protein in CD16+ monocytes up to 245 

days in SARS-CoV-2-negative post-COVID-19 vaccine syndrome (PCVS) individuals,” 
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Hum Vaccin Immunother. 2025, 21, 1: 2494934. doi: 
10.1080/21645515.2025.2494934 

 
29. Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in 

Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front. 
Immunol. 2022, 12: 746021. doi: 10.3389/fimmu.2021.746021 
• Intact viral RNA undetectable in monocytes. 

 
30. Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of 

COVID-19,” Lancet 2024, 24, 6: E345-E347. doi:  10.1016/S1473-3099(24)00211-1 
• “Of 660 pandemic-era specimens tested, 61 (9·2%) specimens from 42 

participants (25% of the group), had one or more detectable SARS-CoV-2 
antigens. The most commonly detected antigen was spike (n=33, 5·0%), 
followed by S1 (n=15, 2·3%)…” 

• “… our data provide strong evidence that SARS-CoV-2, in some form or location, 
persists for up to 14 months following acute SARS-CoV-2 infection.” 

• “… our findings provide no direct evidence regarding the persistent presence of 
replication-competent or even transcriptionally active virus.” 

 
31. Peluso MJ et al., “SARS-CoV-2 and mitochondrial proteins in neural-derived 

exosomes of COVID-19,” Ann Neurol 2022, 91, 6: 772-781. doi: 10.1002/ana.26350 
• Exosomes containing spike protein were detected in plasma of long COVID 

patients with neuropsychiatric symptoms at two months.  
 

32. Roden AC et al., “Comparison of In Situ Hybridization, Immunohistochemistry, and 
Reverse Transcription–Droplet Digital Polymerase Chain Reaction for Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Testing in Tissue,” Arch Pathol 
Lab Med 2021, 145, 7: 785–796. doi: https://doi.org/10.5858/arpa.2021-0008-SA 
• Detected viral protein 46 days after onset of symptoms. 
• “All patients from our institution had tested positive for COVID-19 by 

nasopharyngeal swab within a median of 14.5 days (range, 0–67 days) before 
death. All patients from our institution but one were tested for COVID-19 again at 
time of autopsy; 10 of 13 (76.9%) tested positive.” 

 
33. Röltgen K et al., “Immune imprinting, breadth of variant recognition, and germinal 

center response in human SARS-CoV-2 infection and vaccination,” Cell, 2022, 185, 
6: 1025-1040. doi: 10.1016/j.cell.2022.01.018 
• “mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike 

antigen up to 8 weeks postvaccination in some cases.” 
• “… with spike antigen still present as late as 60 days post-second dose” 
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34. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may 
contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: 
S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007 
• “In a time course experiment, we found the spike protein in the skull marrow, 

kidney, liver, and lung 3 days post-injection, remaining detectable in the kidney 
and liver 14 days post-injection.” 

 
35. Sano H et al., “A case of persistent, confluent maculopapular erythema following a 

COVID-19 mRNA vaccination is possibly associated with the intralesional spike 
protein expressed by vascular endothelial cells and eccrine glands in the deep 
dermis,” J. Dermatol. 2023, 50: 1208–1212. doi: 10.1111/1346-8138.16816  
• “Surprisingly, immunohistochemical staining of the lesion 100 days after the 

disease onset revealed the COVID-19 spike protein expressed by vascular 
endothelial cells and eccrine glands in the deep dermis. As she had no episode 
of COVID-19 infection, it is highly likely that the spike protein was derived from 
the mRNA vaccine and it might be the cause of the development and 
persistence of her skin lesions.” 

 
36. Schultheiss C et al., “Liquid biomarkers of macrophage dysregulation and 

circulating spike protein illustrate the biological heterogeneity in patients with post-
acute sequelae of COVID-19,” J Med Virol 2023, 95, 1: e28364. doi: 
10.1002/jmv.28364 
• Detected SARS-CoV-2 S1 protein in the plasma of approximately 64% of PASC 

study participants recruited at a median of 8 months (range 1–17 months) after 
acute COVID-19, but only in approximately 35% of convalescent control 
patients. 

 
37. Swank Z et al., “Persistent circulating SARS-CoV-2 spike is associated with post-

acute COVID-19 sequelae,” Clin. Infect. Dis. 2022, 76: e487-e490. doi: 
https://doi.org/10.1093/cid/ciac722 
• “We detect severe acute respiratory syndrome coronavirus 2 spike 

predominantly in PASC patients up to 12 months after diagnosis… Although the 
detection of spike in PASC patients months after diagnosis suggests the 
presence of replicating viral reservoirs, further analyses are needed to confirm 
this hypothesis.” 

 
38. Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 

antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2 
antigen persistence,” Front. Med. 2022, 9 (Sec. Infectious Diseases – Surveillance). 
doi: https://doi.org/10.3389/fmed.2022.1003103 
• “The patient tested RT-PCR– for SARS-CoV-2 at 14 days post-infection and 

multiple times thereafter but continued to test intermittently antigen+ for 14 
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weeks post-infection despite no overt exposure to SARS-CoV-2 infected 
individuals.” 

 
39. Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2 

and immune responses in the placentas of pregnant patients recovered from 
COVID-19,” Cell Prolif. 2021, 54, 9: e13091. doi: https://doi.org/10.1111/cpr.13091 
• “Our study showed that SARS-CoV-2 nucleic acid (in one patient) and protein (in 

five patients) were present in the placentas of clinically recovered pregnant 
patients for more than 3 months after diagnosis.” 

 
40. Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA 

COVID-19 vaccination was associated with the presence of encoded spike protein 
in the lesion,” J. Cutan. Immunol. Allergy 2022, 6, 1: 18-23. doi: 10.1002/cia2.12278 
• “multi-dermatomal vesicles, necrotizing vasculitis and superficial 

thrombophlebitis-like lesions, which lasted as long as 3 months possibly 
associated with two doses of BNT162b2” 

 
41. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by 

zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: 
e149633. doi: https://doi.org/10.1172/JCI149633 
• “…our studies showed that spike antigens rose over the first few days of MIS-C 

symptoms and persisted for more than 10 days, occasionally through 6 
months…” 

• “… we measured SARS-CoV-2 RNA from MIS-C stool samples collected several 
weeks after the initial SARS-CoV-2 infection or exposure. Indeed, a majority of 
the patients showed detectable viral loads in the stool ranging from 1.5 × 102 to 
2.5 × 107 RNA copies/mL, suggesting an ongoing nidus of infection in MIS-C.” 

 
42. Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen 

Persistence in Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-
506.e8. doi: https://doi.org/10.1053/j.gastro.2022.04.037 
• Viral spike protein detected 219 days after original positive endoscopy in gut 

lining of 15 out of 132 subjects. 
• “We were unable to culture SARS-CoV-2 from gut tissue of patients with viral 

antigen persistence.” 
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IV.  Lipid nanoparticle toxicity and allergenicity studies 
 
Compiled by Dr. Byram Bridle, PhD, Erik Sass, et al.  
 
Last updated July 1, 2025. Corresponding author: eriksass@gmail.com 
 
The anti-SARS CoV2 mRNA injections rely on lipid nanoparticles (LNPs) bonded with 
polyethylene glycol (PEG) to deliver mRNA coding for the spike protein antigen into human 
cells. However, a growing body of evidence suggests that the ionizable LNPs used in the 
experimental mRNA injections are highly inflammatory on their own, while PEG has long 
been recognized as an allergen with the potential to trigger anaphylaxis (a severe, possibly 
life-threatening allergic reaction). This annotated research collection presents (n=80) 
scientific papers detailing the potential harms of LNPs, PEG, and other components of the 
mRNA injections to the human body and setting forth possible or established 
mechanisms. Some of the research annotated here also suggests a far higher incidence of 
anaphylaxis due to the mRNA injections than claimed in official estimates, ranging from 
1/2,280 doses (Warren CM et al.) to 1/4,049 (Blumenthal KG et al.) and 1/13,882 (Somiya A 
et al.). 
 
This compilation originated with one of Dr. Bridle’s contributions to TOXIC SHOT: Facing 
the Dangers of the COVID "Vaccines," (Chapter 1: The COVID Shots Are Not Real 
Vaccines). 
 
 
ANNOTATED REFERENCES (n=80) 
 

1. Ahn JH et al., “Impact of administration routes and dose frequency on the toxicology 
of SARS-CoV-2 mRNA vaccines in mice model,” Arch Toxicol. 2024. doi: 
https://doi.org/10.1007/s00204-024-03912-1 
• “These results suggest that mRNA vaccines may exhibit various potential 

toxicities, and the toxicological phenotype may vary depending on the LNP 
composition.” 

 
2. Awaya T et al., “Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP 

Vaccination: Mechanisms and Therapeutic Approaches,” Diseases 2024, 12, 10: 
231. doi: https://doi.org/10.3390/diseases12100231 
• “…during the process of endosomal escape, ionizable lipids disrupt the 

endosomal membrane to release mRNA, which can, in some cases, lead to the 
excessive production of inflammatory cytokines.” 

 
3. Bakos T et al., “mRNA-LNP COVID-19 Vaccine Lipids Induce Complement Activation 

and Production of Proinflammatory Cytokines: Mechanisms, E]ects of 
Complement Inhibitors, and Relevance to Adverse Reactions,” Int. J. Mol. Sci. 2024, 
25, 7: 3595. doi: https://doi.org/10.3390/ijms25073595 
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• “… the novel findings in the present study include (i) the dominance of 
alternative pathway activation, (ii) the increased strength of C activation relative 
to corresponding PEGylated liposomes, and (iii) the absence of C activation by 
naked mRNAs.” 

 
4. Barta BA et al., “The COVID-19 mRNA vaccine Comirnaty induces anaphylactic 

shock in an anti-PEG hyperimmune large animal model,” Eur. Heart J. 2023, 44 (supp 
2): ehad655.3291. doi: https://doi.org/10.1093/eurheartj/ehad655.3291 
• “Consistent with previous studies, our current data show a causal role of anti-

PEG Abs in the anaphylaxis to Comirnaty, which involves complement 
activation…” 

 
5. Bigini P et al., “The role and impact of polyethylene glycol on anaphylactic reactions 

to COVID-19 nano-vaccines,” Nat. Nanotechnol. 2021, 16: 1169–1171. doi: 
https://doi.org/10.1038/s41565-021-01001-3 

 
6. Bitounis D et al., “Strategies to reduce the risks of mRNA drug and vaccine toxicity,” 

Nat. Rev. Drug Discov. 2024, 23: 281-300. doi: 10.1038/s41573-023-00859-3 
• “… cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead 

to toxicity, and their possible reactogenicity.” 
 

7. Blumental KG et al., “Acute Allergic Reactions to mRNA COVID-19 Vaccines,” 
JAMA 2021, 325, 15:1562-1565. doi: 10.1001/jama.2021.3976 
• “… severe reactions consistent with anaphylaxis occurred at a rate of 2.47 per 

10 000 vaccinations… The incidence rate of confirmed anaphylaxis in this study 
is larger than that reported by the Centers for Disease Control and Prevention 
based on passive spontaneous reporting methods (0.025-0.11 per 10 000 
vaccinations).” 

 
8. Borgsteede SD et al. “Other excipients than PEG might cause serious 

hypersensitivity reactions in COVID-19 vaccines,” Allergy 2021, 76: 1941–2. doi: 
https://doi.org/10.1111/all.14774 

 
9. Cabanillas B et al., “Allergic reactions to the first COVID-19 vaccine: A potential role 

of polyethylene glycol?” Allergy 2021, 76, 6: 1617-1618. doi:  10.1111/all.14711 
• “Although the trigger of the adverse allergic reactions su]ered by the two NHS 

workers after receiving the vaccine BNT162b2 against COVID-19 has yet to be 
determined, the potential role of the excipient ALC-0159 containing PEG as a 
high-risk hidden trigger of dangerous allergic reactions should be carefully 
considered before advising the administration of BNT162b2 vaccine.” 
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10. Calogiuri G et al., “Polyethylene glycols and polysorbates: Two still neglected 
ingredients causing true IgE-mediated reactions,” J Allergy Clin Immunol Pract 2019, 
7, 7: 2509-2510. doi: 10.1016/j.jaip.2019.05.058 
• “In the light of increased exposure of PEGs and polysorbates in our environment, 

a greater incidence of PEG hypersensitivity should be expected in the next 
years.” 
 

11. Calzetta L et al., “The BNT162b2 mRNA COVID-19 Vaccine Increases the Contractile 
Sensitivity to Histamine and Parasympathetic Activation in a Human Ex Vivo Model 
of Severe Eosinophilic Asthma,” Vaccines 2023, 11, 2: 282. 
doi: 10.3390/vaccines11020282 
 

12. Camera GL et al., “A Step-by-Step Approach to Improve Clinical Translation of 
Liposome-Based Nanomaterials, a Focus on Innate Immune and Inflammatory 
Responses,” Int. J. Mol. Sci. 2021, 22, 2: 820. doi: 10.3390/ijms22020820 
• “… a large proportion of the selected, commercially available carriers failed to 

pass the first homogeneity tests, and further products were found to be cytotoxic 
or interact with the immune system in an undesired way.” 

 
13. Carreno JM et al., “mRNA-1273 but not BNT162b2 induces antibodies against 

polyethylene glycol (PEG) contained in mRNA-based vaccine formulations,” Vaccine 
2022, 40, 42: 6114-6124. doi: https://doi.org/10.1016/j.vaccine.2022.08.024 
• “We detected an increase in the reactivity to mRNA vaccine formulations in 

mRNA-1273 but not BNT162b2 vaccinees’ sera in a prime-boost dependent 
manner. Furthermore, we observed the same pattern of reactivity against 
irrelevant lipid nanoparticles.” 

 
14. Catenacci L et al., “E]ect of Lipid Nanoparticle Physico-Chemical Properties and 

Composition on Their Interaction with the Immune System,” Pharmaceutics 2024, 
16, 12: 1521. doi: https://doi.org/10.3390/pharmaceutics16121521 
• “COVID-19 mRNA vaccines administered in the deltoid muscle in humans 

stimulate inflammation and recruitment of neutrophils, monocytes, and 
dendritic cells...” 

 
15. Chen BM et al., “Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and 

Practical Aspects of Anti-Polyethylene Glycol Antibodies,” ACS Nano 2021, 15, 9: 
14022–14048. doi: https://doi.org/10.1021/acsnano.1c05922 
• “Hypersensitivity reactions including anaphylaxis after infusion of pegylated 

medicines are well documented in both animal and clinical studies… Pegylated 
liposomes encapsulating oligonucleotides induce anti-PEG IgM antibodies in 
mice and cause anaphylactic shock upon a second injection of liposomes.” 
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16. Chen WA et al., “Antibodies against Poly(ethylene glycol) Activate Innate Immune 
Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines,” ACS 
Nano 2023, 17, 6: 5757–5772. doi: https://doi.org/10.1021/acsnano.2c12193 
• “We demonstrate that anti-PEG IgG but not IgM antibodies induce 

hypersensitivity-like symptoms against PLD and other PEGylated nanoparticles 
and macromolecules in mice that depend primarily on neutrophils, 
macrophages, and basophils.” 

 
17. de Vriez J, “Pfizer's vaccine raises allergy concerns. Polymer in mRNA's “packaging” 

may cause rare anaphylactic reactions,” Science 2021, 371, 6524: 10-11. doi: 
10.1126/science.371.6524.10 
• “Severe allergy-like reactions in at least 12 people who received the COVID-19 

vaccine produced by Pfizer and BioNTech may be due to a compound in the 
packaging of the messenger RNA (mRNA) that forms the vaccine's main 
ingredient, scientists say. A similar mRNA vaccine developed by Moderna also 
contains the compound, polyethylene glycol (PEG).” 

 
18. Dézsi L et al., “A naturally hypersensitive porcine model may help understand the 

mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: 
Complement activation as a possible contributing factor,” Geroscience 2022, 44: 
597–618. doi: https://doi.org/10.1007/s11357-021-00495-y 

 
19. du Preez HN et al., “COVID-19 vaccine adverse events: Evaluating the 

pathophysiology with an emphasis on sulfur metabolism and endotheliopathy,” Eur 
J Clin Invest. 2024, 54, 10: e14296. doi: https://doi.org/10.1111/eci.14296 
• “We hypothesize that after COVID-19 vaccination, the combination of the 

genetic-vaccine-generated (GVG) Sp antigen, the genetic material and LNPs, will 
ultimately contribute to GL [glycocalyx] degradation; mainly through the 
generation of chronic, skewed or excessive inflammatory responses, and 
oxidative stress. Therefore, AEs experienced postvaccination results from 
compromised barrier functions, circulating pro-inflammatory cytokines, reactive 
oxygen species (ROS), GL fragments, harmful NPs, and soluble GVG Sp and its 
fragments, all of which cause various cytotoxic e]ects.”  

 
20. Eberlein B et al., “Allergy to PEG (polyethylene glycol) – sensitivity of basophil 

activation test with COVID-19 mRNA-vaccine BNT162B2,” Hum Vaccin Immunother. 
2024, 20, 1. doi: https://doi.org/10.1080/21645515.2024.2312600 

 
21. Gao Z et al., “Exploring the impact of lipid nanoparticles on protein stability and 

cellular proteostasis,” J. Colloid Interface Sci. 2025, 678(A): 656-665. doi: 
https://doi.org/10.1016/j.jcis.2024.08.146 
• “… LNPs may induce subtle proteome stress by compromising protein stability 

and proteostasis even without obvious damage to cell viability.” 
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22. Garces M et al., “Current understanding of nanoparticle toxicity mechanisms and 
interactions with biological systems,” New J. Chem. 2021, 45: 14328-14344. doi: 
https://doi.org/10.1039/D1NJ01415C 

 
23. Giavina-Bianchi P and J Kalil, “May polyethylene glycol be the cause of anaphylaxis 

to mRNA COVID-19 vaccines?” World Allergy Organ J. 2021, 14, 4: 100532. doi: 
https://doi.org/10.1016/j.waojou.2021.100532 

 
24. Guo C et al., “The interplay between PEGylated nanoparticles and blood immune 

system,” Adv Drug Deliv Rev. 2023, 200: 114004. doi: 10.1016/j.addr.2023.115044 
• “Complement activation-related pseudoallergy (CARPA) and accelerated blood 

clearance (ABC) phenomenon are the most notorious problems. CARPA is a 
non-IgE-activated hypersensitivity reaction (HSR) that manifests as a 
hemodynamic disturbance and an inflammatory response that can cause 
serious consequences or even fatalities.” 

 
25. Haroon HB et al., “Activation of the complement system by nanoparticles and 

strategies for complement inhibition,” Eur. J. Pharm. Biopharm. 2023, 193: 227-240. 
doi: https://doi.org/10.1016/j.ejpb.2023.11.006 

 
26. Hashimoto T et al., “High anaphylaxis rates following vaccination with the Pfizer 

BNT162b2 mRNA vaccine against COVID-19 in Japanese healthcare workers: a 
secondary analysis of initial post-approval safety data,” J. Travel Med. 2021, 28, 7: 
taab090. doi: https://doi.org/10.1093/jtm/taab090  

 
27. Ibrahim M et al., “Polyethylene glycol (PEG): The nature, immunogenicity, and role in 

the hypersensitivity of PEGylated products,” J Control Release 2022, 351: 215-230. 
doi: https://doi.org/10.1016/j.jconrel.2022.09.031 
• “… the main causes and exact mechanisms of hypersensitivity to mRNA COVID-

19 vaccines have not been fully elucidated, but reports of hypersensitivity 
reactions have focused on the role of the PEG polymer that is used in the 
preparation of these vaccines… we explain the potential role of PEG in the 
reports of the immunogenicity and hypersensitivity that has been encountered 
post-mRNA COVID-19 vaccination.” 

 
28. Igyarto BZ et al., “Future considerations for the mRNA-lipid nanoparticle vaccine 

platform,” Curr Opin Virol. 2021, 48: 65–72. doi: 10.1016/j.coviro.2021.03.008 
• “… some of the immediate allergic responses observed with the first shot of 

mRNA-LNP vaccines might be related to pre-existing PEG antibodies. Since 
these vaccines often require a booster shot, anti-PEG antibody formation is 
expected after the first shot. Thus, the allergic events are likely to increase upon 
re-vaccination.” 

• “It has been shown that mRNA-LNP vaccines have an altered tissue distribution, 
dynamics, and uptake in animals that have been pre-exposed to inflammatory 
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agents. These findings suggest that people with pre-existing inflammatory 
conditions might show altered immune responses to these vaccines and might 
present with more severe side-e]ects.” 

 
29. Igyarto BZ and Zhen Qin, “The mRNA-LNP vaccines – the good, the bad and the 

ugly?” Front. Immunol. 2024, 15 (Sec. Vaccines and Molecular Therapeutics). doi: 
https://doi.org/10.3389/fimmu.2024.1336906 
• “… the LNPs’ ionizable lipid component of the mRNA-LNP vaccine is highly 

inflammatory … another potential explanation for the distinct lots triggering 
di]erent levels of adverse events could be that the amounts of mRNA-LNP or the 
mRNA : LNP ratio di]ered between lots.” 

 
30. Jiang SY et al., “Non–immunoglobulin E-mediated allergy associated with Pfizer-

BioNTech coronavirus disease 2019 vaccine excipient polyethylene glycol,” Ann 
Allergy Asthma Immunol. 2021, 127, 6: 694-696. doi: 10.1016/j.anai.2021.09.012 

 
31. Jo H et al., “Regulating Immune Responses Induced by PEGylated Messenger RNA–

Lipid Nanoparticle Vaccine,” Vaccines 2025, 13, 1: 14. 
doi: 10.3390/vaccines13010014 

 
32. Ju Y et al., “Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid 

Nanoparticle mRNA Vaccine,” ACS Nano 2022, 16, 8: 11769–11780. doi: 
https://doi.org/10.1021/acsnano.2c04543 
• “We conclude that PEG-specific antibodies can be boosted by LNP mRNA 

vaccination and that the rise in PEG-specific antibodies is associated with 
systemic reactogenicity and an increase of PEG particle–leukocyte association 
in human blood.” 

 
33. Ju Y et al., “Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines,” 

Nat. Rev. Immunol. 2023, 23: 135-135. doi: 10.1038/s41577-022-00825-x 
 

34. Klimek L et al., “Allergenic components of the mRNA-1273 vaccine for COVID-19: 
Possible involvement of polyethylene glycol and IgG-mediated complement 
activation,” Allergy 2021, 76, 11: 3307-3313. doi: https://doi.org/10.1111/all.14794 
• “Allergic reactions to such PEGylated lipids are IgE-mediated. However, non-IgE-

mediated reactions should also be considered.” 
 

35. Korzun T et al., “From Bench to Bedside: Implications of Lipid Nanoparticle Carrier 
Reactogenicity for Advancing Nucleic Acid Therapeutics,” Pharmaceuticals 2023, 
16, 8: 1088. doi: https://doi.org/10.3390/ph16081088 
• “… the current data raise important questions revolving around LNP-associated 

side e]ects. For instance, the use of a greater mRNA–LNP dose in the mRNA-
1273 vaccine and di]erent ionizable lipids used in the formulation are potential 
explanations for the increased reactogenicity of mRNA-1273 compared with 
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BNT162b formulations in the Moderna and Pfizer-BioNTech COVID-19 vaccines, 
respectively.” 

 
36. Korzun T et al., “Lipid Nanoparticles Elicit Reactogenicity and Sickness Behavior in 

Mice Via Toll-Like Receptor 4 and Myeloid Di]erentiation Protein 88 Axis,” ACS Nano 
2024, 18, 36: 24842–24859. doi: https://doi.org/10.1021/acsnano.4c05088 
• “Our comprehensive investigation utilizing gene ablation studies and 

pharmacological receptor manipulation proves that TLR4 activation by LNPs 
triggers distinct physiologically meaningful responses in mice. We show that 
TLR4 and MyD88 are essential for reactogenic signal initiation, pro-inflammatory 
gene expression, and physiological outcomes like food intake and body weight ─ 
robust metrics of sickness behavior in mice.” 

 
37. Kozma GT et al., “Anti-PEG antibodies: Properties, formation, testing and role in 

adverse immune reactions to PEGylated nano-biopharmaceuticals,” Adv. Drug 
Deliv. Rev. 2020, 154-155: 163-175. doi: https://doi.org/10.1016/j.addr.2020.07.024 
• “Considering the known causal relationships among C [complement] activation, 

ABC [accelerated blood clearance], HSRs [hypersensitivity reactions], 
opsonization and immunogenicity, we proposed the possible rise of an immune 
stimulatory vicious cycle among these e]ects…” 

 
38. Kozma GT et al., “Role of anti-polyethylene glycol (PEG) antibodies in the allergic 

reactions to PEG-containing Covid-19 vaccines: Evidence for immunogenicity of 
PEG,” Vaccine 2023, 41, 31: 4561-4570. doi: 10.1016/j.vaccine.2023.06.009 
• “The anti-PEG IgG and/or IgM levels in the 15 vaccine reactors (3 anaphylaxis) 

were significantly higher compared to nonreactors. Serial testing of plasma 
showed significant correlation between the booster injection-induced rises of 
anti-S and anti-PEG IgGs, suggesting coupled anti-S and anti-PEG 
immunogenicity.” 

 
39. Laisuan W, “COVID-19 vaccine anaphylaxis: current evidence and future 

approaches,” Front Allergy. 2021, 2: 801322. doi:10.3389/falgy.2021.801322 
 

40. Li Y et al., “Nanoparticle-Binding Immunoglobulins Predict Variable Complement 
Responses in Healthy and Diseased Cohorts,” ACS Nano 2024, 18, 42: 28649–
28658. doi: https://doi.org/10.1021/acsnano.4c05087 

 
41. Lim XR et al., “Anaphylatoxin Complement 5a in Pfizer BNT162b2-Induced 

Immediate-Type Vaccine Hypersensitivity Reactions,” Vaccines 2023, 11, 6: 1020. 
doi: https://doi.org/10.3390/vaccines11061020 

 
42. Luxi N et al., “Allergic Reactions to COVID-19 Vaccines: Risk Factors, Frequency, 

Mechanisms and Management,” BioDrugs 2022, 36: 443-458. doi: 
https://doi.org/10.1007/s40259-022-00536-8 
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• “PEG is the only excipient in COVID-19 vaccines that has been clearly 
demonstrated to cause mainly immediate HRs, while the role of trometamol and 
PS80 as relevant allergens in these vaccines remains more questionable.” 

 
43. Maltezou HC et al., “Anaphylaxis rates following mRNA COVID-19 vaccination in 

children and adolescents: Analysis of data reported to EudraVigilance,” Vaccine 
2023, 41, 14: 2382-2386. doi: https://doi.org/10.1016/j.vaccine.2023.02.067 
• “The overall mean anaphylaxis rate was 12.81 [95% confidence interval (CI): 

11.49–14.12] per 106 mRNA vaccine doses [12.14 (95% CI: 6.37–17.91) per 
106 doses for mRNA-1273 and 12.84 (95% CI: 11.49–14.19) per 106 doses for 
BNT162b2].” 

 
44. Maugeri M et al.. “Linkage between endosomal escape of LNP-mRNA and loading 

into EVs for transport to other cells,” Nat Commun 2019, 10: 4333. doi: 
https://doi.org/10.1038/s41467-019-12275-6 
• “… the systemic delivery of both EVs and LNPs cause the expression of 

proinflammatory cytokines in mice…” 
 

45. Moghimi SM, “Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines,” 
Mol. Ther. 2021, 29, 3: 898-900. doi: 10.1016/j.ymthe.2021.01.030 
• “Limited information is available on LNP size distribution, polydispersity index, 

particle number, and presence of likely co-existing vesicles and micelles in the 
Pfizer-BioNTech and Moderna vaccines. Batch-to-batch variations in these 
parameters could further play a modulatory role in allergic reactions, and these 
possibilities were previously suggested for liposomes.” 

 
46. Moghimi SM et al., “Perspectives on complement and phagocytic cell responses to 

nanoparticles: from fundamentals to adverse reactions,” J Control Rel. 2023, 356: 
115–129. doi: https://doi.org/10.1016/j.jconrel.2023.02.022 

 
47. Moghimi SM and Dmitri Simberg, “Pro-inflammatory concerns with lipid 

nanoparticles,” Mo. Ther. 2022, 30, 6: 2109-2110. doi: 10.1016/j.ymthe.2022.04.011 
• “Considering the pro-inflammatory nature of the currently available ionizable 

cationic lipids, notably their undesirable immune cascade initiated through the 
IL-1β release, and of other cationic lipids, the potential application of LNPs for 
systemic administration must be viewed cautiously.” 

 
48. Mouri M et al., “Serum polyethylene glycol-specific IgE and IgG in patients with 

hypersensitivity to COVID-19 mRNA vaccines,” Allergol Int. 2022, 71, 4: 512-519. doi: 
https://doi.org/10.1016/j.alit.2022.05.007 
• “The results suggest that PEG is one of the antigens in the allergy to COVID-19 

mRNA vaccines. Cross-reactivity between PEG and PS might be crucial for 
allergy to the vaccines.” 
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49. Muhaimin M et al., “The Toxicological Profile of Active Pharmaceutical Ingredients–

Containing Nanoparticles: Classification, Mechanistic Pathways, and Health 
Implications,” Pharmaceuticals 2025, 18, 5: 703. doi: 10.3390/ph18050703 

 
50. Nakayama T et al., “Comparison of cytokine production in mice inoculated with 

messenger RNA vaccines BNT162b2 and mRNA-1273,” Microbiol Immunol 2022, 67, 
3: 120-128. doi: https://doi.org/10.1111/1348-0421.13043 
• “The induction of inflammatory cytokines in the mouse model is related to the 

cause of adverse events in humans, with a higher incidence of adverse events 
after the second dose.” 

 
51. Ndeupen S et al., “The mRNA-LNP platform's lipid nanoparticle component used in 

preclinical vaccine studies is highly inflammatory,” iScience 2021, 24, 12: 103479. 
doi: 10.1016/j.isci.2021.103479 
• “Intradermal injection of these LNPs alone or in combination with non-coding 

poly-cytosine mRNA led to rapid and robust innate inflammatory responses, 
characterized by neutrophil infiltration, activation of diverse inflammatory 
pathways, and production of various inflammatory cytokines and chemokines. 
The same dose of LNP delivered intranasally led to similar inflammatory 
responses in the lung and resulted in a high mortality rate.” 

 
52. Nguyen HM et al., “mRNA-LNPs induce immune activation and cytokine release in 

human whole blood assays across diverse health conditions,” Mol. Ther. 2025, 33, 6: 
2872-2885. doi: 10.1016/j.ymthe.2024.12.019 

 
53. Omo-Lamai S et al., “Physicochemical Targeting of Lipid Nanoparticles to the Lungs 

Induces Clotting: Mechanisms and Solutions,” Adv. Mater. 2024, 36, 26: 2312026. 
doi: https://doi.org/10.1002/adma.202312026 

 
54. Parhiz H et al., “Added to pre-existing inflammation, mRNA-lipid nanoparticles 

induce inflammation exacerbation (IE),” J Control Release 2022, 344: 50-61. doi: 
https://doi.org/10.1016/j.jconrel.2021.12.027 
• “Although fairly benign in the healthy state, LNP potentiated existing 

inflammation in mice that had received the bacterial cell wall component LPS 
intratracheally (IT) or intravenously (IV).”  

 
55. Qin Z et al., “Pre-exposure to mRNA-LNP inhibits adaptive immune responses and 

alters innate immune fitness in an inheritable fashion,” PLoS Pathog. 2022, doi: 
https://doi.org/10.1371/journal.ppat.1010830 
• “The mRNA-LNP-based SARS-CoV-2 vaccine is highly inflammatory, and its 

synthetic ionizable lipid component responsible for the induction of 
inflammation has a long in vivo half-life… We found that pre-exposure to mRNA-
LNPs or LNP alone led to long-term inhibition of the adaptive immune response.” 
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56. Radice A et al., “Potential culprits for immediate hypersensitivity reactions to 

BNT162b2 mRNA COVID-19 vaccine: not just PEG,” Eur Ann Allergy Clin Immunol 
2021, 53, 5: 240-242. doi: https://doi.org/10.23822/eurannaci.1764-1489.214 
• “Apart from PEG, another component of the LNP, 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC), should also be considered a potential culprit as it 
contains a quaternary ammonium (QA) ion.” 

 
57. Rama TA et al., “Hypersensitivity to the Moderna COVID-19 vaccine caused by 

tromethamine: PEG is not always the culprit excipient,” J Investig Allergol Clin 
Immunol. 2022, 32, 5: 414-415. doi: 10.18176/jiaci.0773 
• “… this case provides further evidence that the excipient, and specifically IgE-

mediated hypersensitivity to tromethamine, may be an underlying mechanism 
for immediate hypersensitivity to mRNA COVID-19 vaccines.” 

 
58. Sampath V et al., “Vaccines and allergic reactions: The past, the current COVID-19 

pandemic, and future perspectives,” Allergy 2021, 76, 6: 1640-1660. doi: 
https://doi.org/10.1111/all.14840 
• “This suggests that the incidence of anaphylaxis in the mRNA BNT162b2 (11.1 

cases per million doses) and mRNA-1273 COVID-19 vaccines (2.5 cases per 
million doses) may be about 2 to 8.5 times as high as the incidence reported in 
the 2016 VSD study for all vaccines (1.31 per million doses).” 

 
59. Sellaturay P et al., “Polyethylene glycol (PEG) is a cause of anaphylaxis to the 

Pfizer/BioNTech mRNA COVID-19 vaccine,” Clin Exp Allergy 2021, 51, 6: 861-863. 
doi: https://doi.org/10.1111/cea.13874 
• “Here, we show polyethylene glycol allergy caused one of the first cases of 

anaphylaxis to the Pfizer/BioNTech COVID-19 vaccine. Allergy skin prick testing 
with polyethylene glycol triggered anaphylaxis, highlighting the importance of 
safety procedures during investigation.” 

 
60. Shah MM et al., “Elucidating allergic reaction mechanisms in response to SARS-

CoV-2 mRNA vaccination in adults,” Allergy 2024 79, 9: 2502-2523. doi: 
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61. Sharma N et al., “Nanoparticles toxicity: an overview of its mechanism and 

plausible mitigation strategies,” J. Drug. Target. 2024, 32, 5: 457-469. doi: 
https://doi.org/10.1080/1061186X.2024.2316785 

 
62. Shi D et al., “To PEGylate or not to PEGylate: Immunological properties of 

nanomedicine’s most popular component, polyethylene glycol and its alternatives,” 
Adv. Drug Deliv. Rev. 2022, 180: 114079. doi: 10.1016/j.addr.2021.114079 
• “First, phagocytic cells of the immune system are at the forefront of clearance of 

PEG and PEGylated materials; therefore, toxicity to these cells may influence 
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body’s general defense against infections and damaged or transformed host’s 
cells. Second, generation of the specific immune response to PEG in the form of 
antibodies contributes to hypersensitivity reactions (HSRs) to PEG and 
PEGylated products. Such HSRs include true allergy (IgE mediated, type I 
hypersensitivity), anaphylactoid reactions (complement-mediated immediate 
type hypersensitivity or complement-mediated pseudoallergy, CARPA), type II 
and type III hypersensitivity (IgM and IgG-mediated) reactions. Third, 
neutralization and cross-reactivity of such antibodies may contribute to HSRs 
and altered PK of other products containing PEG or other structures similar to 
PEG.” 

 
63. Simberg D et al., “PEGylation technology: addressing concerns, moving forward,” 

Drug Deliv. 2025, 32, 1: 2494775. doi: 10.1080/10717544.2025.2494775 
 

64. Somiya M et al., “Sex di]erences in the incidence of anaphylaxis to LNP-mRNA 
COVID-19 vaccines,” Vaccine 2021, 39, 25): 3313–3314. 
doi: 10.1016/j.vaccine.2021.04.066 
• “On February 17, 2021, Japan started vaccinating healthcare workers with the 

Pfizer-BioNTech lipid nanoparticle (LNP)-mRNA COVID-19 vaccine. Among total 
79 anaphylaxis cases, 70 cases have been reported in women (89.9%) after 
1,096,698 doses of the vaccine until April 4, 2021…  Another report confirmed 
the female predominance of anaphylaxis cases in over 60,000 doses of LNP-
mRNA vaccinations; 15 (94%) of the 16 confirmed cases were women… One 
possible explanation for the sex imbalance is that sensitization to PEG is more 
common in women due to the relatively frequent exposure to PEG-containing 
products, such as cutaneous exposure to cosmetics or the use of medications 
such as contraceptive injections.” 

 
65. Stone CA, Jr., et al., “Immediate Hypersensitivity to Polyethylene Glycols and 

Polysorbates: More Common Than We Have Recognized,” J Allergy Clin Immunol 
Pract 2019, 7, 5: 1533-1540.e8. doi: https://doi.org/10.1016/j.jaip.2018.12.003 
• “Immediate hypersensitivity to PEG 3350 with cross-reactive polysorbate 

80 hypersensitivity may be underrecognized in clinical practice.” 
 

66. Szebeni J et al., “Applying lessons learned from nanomedicines to understand rare 
hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines,” Nat. 
Nanotechnol. 2022, 17: 337–346. doi: https://doi.org/10.1038/s41565-022-01071-x 
• “In summary, all the components of LNP–mRNA vaccines… have various 

immunostimulatory e]ects… collectively required for vaccine e]icacy. The same 
components, however, also contribute to HSR and other IMAEs…” 

 
67. Tahtinen S and Ira Mellman, “IL-1-mediated inflammation induced by di]erent RNA 

vaccines is context-specific,” Nature Immunol. 2022, 23, 4: 485-486. doi: 
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• “Systemic inflammatory responses generated by lipid-formulated RNA vaccines 
are driven by di]erential induction of pro- and anti-inflammatory interleukin-1 
(IL-1) family members in mice and humans… We discovered that the RNA-LPX 
vaccine induces the release of the cytokine IL-1. IL-1 initiates an innate immune 
cascade that results in systemic cytokine release and the adverse events that 
limit vaccine dosing in humans.” 

 
68. Tahtinen S et al., “IL-1 and IL-1ra are key regulators of the inflammatory response to 

RNA vaccines,” Nat. Immunol. 2022, 23: 532-542. doi: 10.1038/s41590-022-01160-y 
• “In human immune cells, RNA vaccines induce production of IL-1 cytokines, 

predominantly IL-1β, which is dependent on both the RNA and lipid formulation. 
IL-1 in turn triggers the induction of the broad spectrum of pro-inflammatory 
cytokines (including IL-6).” 

 
69. Tenchov R et al, “PEGylated Lipid Nanoparticle Formulations: Immunological Safety 

and E]iciency Perspective,” Bioconjug. Chem. 2023, 34, 6: 941-960. doi: 
https://doi.org/10.1021/acs.bioconjchem.3c00174 
• “A search in the CAS Content Collection identified nearly 900 documents, 

including ∼150 patents, related to the PEG–lipids immunologically induced 
adverse e]ects such as anti-PEG antibodies generation, accelerated blood 
clearance, and complement activation-related pseudoallergies.” 

 
70. Tinari S, “The EMA covid-19 data leak, and what it tells us about mRNA instability,” 

BMJ 2021, 372: n672. doi: https://doi.org/10.1136/bmj.n627  
• “JW Ulm, a gene therapy specialist who has published on tissue targeting of 

therapeutic vectors, raised concerns about the biodistribution of LNPs: ‘At 
present, relatively little has been reported on the tissue localisation of the LNPs 
used to encase the SARS-CoV-2 spike protein-encoding messenger RNA, and it 
is vital to have more specific information on precisely where the liposomal 
nanoparticles are going after injection.’ It is an unknown that Ulm worries could 
have implications for vaccine safety.” 

 
71. Tran TT and SR Ro]ler, “Interactions between nanoparticle corona proteins and the 

immune system,” Curr Opin Biotechnol. 2023, 84: 103010. doi: 
10.1016/j.copbio.2023.103010 
• “Intravenous administration of pegylated liposomal formulations containing Toll-

like receptor agonists to mice on days 0, 4, and 8 resulted in hypersensitivity 
reaction symptoms…” 
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95. doi: https://doi.org/10.1016/j.jaci.2021.04.032 

https://doi.org/10.1038/s41590-022-01160-y
https://doi.org/10.1021/acs.bioconjchem.3c00174
https://doi.org/10.1136/bmj.n627
https://doi.org/10.1016/j.copbio.2023.103010
https://doi.org/10.1016/j.jaci.2021.04.032


• “Our findings implicate PEG, as covalently modified and arranged on the vaccine 
lipid nanoparticle, as a potential trigger of anaphylaxis in response to BNT162b2, 
and highlight shortcomings of current skin testing protocols for allergy to 
PEGylated liposomal drugs.” 

 
73. Tsilingiris D et al., “Potential implications of lipid nanoparticles in the pathogenesis 

of myocarditis associated with the use of mRNA vaccines against SARS-CoV-2,” 
Metabol. Open 2022, 13: 100159. doi: https://doi.org/10.1016/j.metop.2021.100159 
• “The recent observation of a similar adverse event [myocarditis] in a recipient of 

the non-mRNA, peptide-based NVX-CoV2373 in the frame of a phase III clinical 
trial with 7020 participants in the active treatment arm raises the question 
whether the lipid nanoparticle sheath, which is a common structural component 
of these platforms could be implicated in the pathogenesis of vaccine-induced 
myocarditis.” 

 
74. Wang H et al., “Polyethylene glycol (PEG)-associated immune responses triggered 

by clinically relevant lipid nanoparticles in rats,” npj Vaccines 2023, 8: 169. doi: 
https://doi.org/10.1038/s41541-023-00766-z 
• “… ‘antigen-antibody’ complexes may induce severe side e]ects including 

hypersensitivity reactions, although the underlying mechanisms have not been 
fully clarified… Overall, these data provided strong evidence for the dose- and 
time-dependent induction of anti-PEG IgM.” 

 
75. Wang J et al., “Recent Advances in Lipid Nanoparticles and Their Safety Concerns 

for mRNA Delivery,” Vaccines 2024, 12, 10: 1148. doi: 10.3390/vaccines12101148 
• “… as the immunological activation in response to mRNA-LNP treatment 

increases, the body’s defense capability may also rise, but there is a high 
possibility of the mRNA-LNP complexes causing adverse e]ects, including 
allergies and autoimmune diseases.” 

 
76. Warren CM et al. “Assessment of Allergic and Anaphylactic Reactions to mRNA 

COVID-19 Vaccines With Confirmatory Testing in a US Regional Health System,” 
JAMA Netw. Open. 2021, 4, 9: e2125524. doi: 
10.1001/jamanetworkopen.2021.25524 
• “These findings suggest that non–IgE-mediated allergic reactions to PEG may be 

responsible for many documented cases of allergy to mRNA vaccines.” 
 

77. Xuan L et al., “Nanoparticles-Induced Potential Toxicity on Human Health: 
Applications, Toxicity Mechanisms, and Evaluation Models,” MedComm 2023, 4, 4:  
e327. doi: https://doi.org/10.1002/mco2.327 
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• “PEG antibodies binding on the LNP vaccine increased probability 
of complement activation in animal as well as in human serum and led to 
lethal side e]ect in large dosage via intravenous injection of mice. Our data 
suggested that PEG antibodies in human was a risky factor of LNP-based 
vaccines for biosafety concerns but not e]icacy.” 

 
79. Yuan Z et al., “Impact of physicochemical properties on biological e]ects of lipid 

nanoparticles: Are they completely safe,” Sci Total Environ. 2024, 927: 172240. doi: 
https://doi.org/10.1016/j.scitotenv.2024.172240 
• “The physicochemical properties of LNPs, like size, surface hydrophobicity, 

surface charge, surface modification and lipid composition, determine the 
interaction of LNPs with macromolecules and organelles to a large extent, 
resulting in negative e]ects on cells, especially cytotoxicity and genotoxicity, 
and cell death.” 
 

80. Zhou ZH et al ., “Anti-PEG IgE in anaphylaxis associated with polyethylene glycol,” J 
Allergy Clin Immunol Pract 2021, 9, 4: 1731-1733.e3. doi: 10.1016/j.jaip.2020.11.011 
• “… all the anaphylaxis case samples and none of the control samples were 

clearly positive for anti-PEG IgE.” 
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V. COVID “vaccine” immune imprinting library 
 
Compiled by Dr. Steven Hatfill, MD, MMed, Erik Sass, et al.  
 
Last updated July 1, 2025. Corresponding author: eriksass@gmail.com 
 
Immune imprinting, dubbed “original antigenic sin” by Thomas Francis Jr., occurs when 
memory B lymphocytes produced in response to an initial viral infection dominate 
subsequent responses to related viruses, producing antibodies geared to the original 
exposure. Long-term immune memory has many advantages, but immune imprinting can 
be harmful if it interferes with immune response to later infections.  
 
The following collection of peer-reviewed papers (n=140) suggests that COVID “vaccines” 
imprinted the immune systems of recipients through exposure to the “wild type” spike 
protein from the original Wuhan strain, shaping their response to subsequent variants in 
potentially harmful ways. Immune imprinting impaired responses to new variants by 
skewing B cell production of antibodies toward the “ancestral” spike protein at the 
expense of new antibodies specifically tailored to the variants’ heavily mutated spike. 
Additionally, by imprinting a single antigen – the spike protein – on recipients’ immune 
systems, the “vaccines” prevented them from forming antibodies to other, less mutation-
prone parts of the virus, such as proteins from the virus nucleocapsid (Ahmed MIM et al., 
Delgado JF et al., Paula NM et al., Smith CP et al., Yao D et al). Further findings point to 
“deep immunological imprinting” or “hybrid immune damping,” in which “vaccination” 
combined with infection alters later immune response unpredictably (Aguilar-Bretones M 
et al., Gao B et al., Hornsby H et al., Ju B et al., Reynolds CJ et al., Wang Q et al.). 
 
This collection originated with Dr. Steven Hatfill’s contribution to TOXIC SHOT: Facing the 
Dangers of the COVID “Vaccines” (Chapter 5: Debunking CDC’s Bad Science).  
 
 
ANNOTATED REFERENCES (N=140) 
 

1. Addetia A et al., “Neutralization, e]ector function and immune imprinting of 
Omicron variants,” Nature 2023, 621: 592-601. doi: 10.1038/s41586-023-06487-6 
• “Omicron breakthrough infections of Wu-vaccinated subjects primarily recall 

cross-reactive MBCs specific for epitopes shared by multiple SARS-CoV-2 
variants rather than priming naive B cells that recognize Omicron RBD-specific 
epitopes. We observed an unexpectedly small number of MBCs specific for 
Omicron RBDs (and not cross-reacting with the Wu RBD) even after two 
exposures to Omicron S antigens, including after Wu/BA.5 or Wu/BA.1 bivalent 
mRNA vaccination.” 
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2. Aguilar-Bretones M et al., “Impact of antigenic evolution and original antigenic sin 
on SARS-CoV-2 immunity,” J Clin Invest. 2023, 133, 1: e162192. doi: 
10.1172/JCI162192 
• “… vaccinated individuals infected with the Alpha or Delta variant have a 

relatively decreased response to variant-specific epitopes compared with 
unvaccinated individuals, which is indicative of OAS… In addition, more traits of 
immune imprinting have recently been identified in hybrid-immune individuals 
who were infected with Wuhan-1 strain before vaccination, in whom 
enhancement of VOC cross-reactive antibody titers and T cells by Omicron 
infection was nullified, a phenomenon termed hybrid immune damping.” 

 
3. Ahmed MIM et al., “Enhanced Spike-specific, but attenuated Nucleocapsid-

specific T cell responses upon SARS-CoV-2 breakthrough versus non-breakthrough 
infections,” Front. Immunol. 2022, 13 (Sec. Vaccines and Molecular Therapeutics). 
doi: https://doi.org/10.3389/fimmu.2022.1026473 
• “Subjects with vaccine breakthrough infection had significantly higher CD4 and 

CD8 T cell responses targeting the vaccine-encoded Spike during the first and 
third/fourth week after PCR diagnosis compared to non-vaccinated controls, 
respectively. In contrast, CD4 T cells targeting the non-vaccine encoded 
Nucleocapsid antigen were of significantly lower magnitude in BTI as compared 
to non-BTI. Hence, previous vaccination was linked to enhanced T cell 
responses targeting the vaccine-encoded Spike antigen, while responses 
against the non-vaccine encoded Nucleocapsid antigen were significantly 
attenuated.” 

 
4. Alsoussi WB et al., “SARS-CoV-2 Omicron boosting induces de novo B cell 

response in humans,” Nature 2023, 617, 7961: 592-598. doi: 
https://doi.org/10.1038/s41586-023-06025-4 
• “mRNA-1273 and mRNA-1273.213 both elicited robust germinal centre 

responses and maturation of the MBC and BMPC responses, but we did not 
isolate any antibodies specifically targeting S proteins from the variant strains 
encoded by the mRNA-1273.213 vaccine that did not cross-react to the original 
WA1/2020 S protein. Thus, the B cell response after boosting with the mRNA-
1273.213 vaccine was imprinted by the primary vaccination series with mRNA-
1273, which encodes the ancestral S protein.” 

 
5. Altmann DM et al., “COVID-19 vaccination: The road ahead,” Science 2022, 375, 

6586: 1127-1132. doi: 10.1126/science.abn1755 
• “In terms of immune imprinting (‘original antigenic sin’), the data show that 

di]erent repertoires emerge, with associated implications for variable quality 
and quantity of neutralization of current or future VOC. For example, our 
comparative analysis of di]erential VOC neutralization patterns in vaccinees 
shows the development of imprinted di]erences between those who had a prior 
infection with either the ancestral or Alpha virus. Faced with these diverse 
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scenarios, the question is whether to keep developing boosters carrying 
prototypic Wuhan Hu-1 spike sequence or focus on being reactive to regionally 
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maturation of antibodies and two-time stimulation with di]erent omicron 
antigens might still not be su]icient to overcome immune imprinting.”  

 
51. Ho]man M et al., “Profound neutralization evasion and augmented host cell entry 

are hallmarks of the fast-spreading SARS-CoV-2 lineage XBB.1.5,” Cel Mol 
Immunol 2023, 20, 419-422. doi: https://doi.org/10.1038/s41423-023-00988-0 
• “Finally, we investigated the neutralization sensitivity of XBB.1.5pp to antibodies 

induced by vaccination with or without breakthrough infection (BTI). For this, we 
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the fourth dose… Taken together, these findings appear to be consistent with 
those of a recent study that found that the primary benefit of booster vaccines is 
augmentation of neutralizing antibodies without a strong e]ect on cellular 
immunity beyond that already induced by the primary vaccination series.” 

 
121. Uraki R et al., “Humoral immune evasion of the omicron subvariants BQ.1.1 and 

XBB,” Lancet Infect Dis. 2023, 23, 1: 30-32. doi: 10.1016/S1473-3099(22)00816-7 
• “The FRNT50 geometric mean titres against BQ.1.1 and XBB were 21·1-fold and 

21·6-fold lower, respectively, than those against the ancestral strain (SARS-CoV-
2/UT-NC002-1T/Human/2020/Tokyo). In addition, the geometric mean titres 
against BQ.1.1 and XBB were 1·7-fold and 2·6-fold lower, respectively, than 
those against BA.5 and BA.2. Similar results were obtained with samples from 
individuals who received four doses of mRNA vaccine; the FRNT50 geometric 
mean titres against BQ.1.1 and XBB were 43·3-fold and 51·6-fold lower, 
respectively, than those against the ancestral strain, and were 3·7-fold and 6·2-
fold lower than those against BA.5 and BA.2, respectively. In contrast, most of 
the samples from vaccinees with BA.2 breakthrough infection neutralised BQ.1.1 
and XBB; however, the FRNT50 geometric mean titres against BQ.1.1 and XBB 
were 35·2-fold and 61·7-fold lower, respectively, than those against the ancestral 
strain, and were 4·9-fold and 15·1-fold lower than those against BA.5 and BA.2, 
respectively.” 

 

https://doi.org/10.1016/j.immuni.2024.02.016
https://doi.org/10.1038/s41467-023-35815-7
https://doi.org/10.1016/S1473-3099(22)00816-7


122. Voss WN et al., “Hybrid immunity to SARS-CoV-2 arises from serological recall of 
IgG antibodies distinctly imprinted by infection or vaccination,” Cell Rep Med. 
2024, 5, 8: 101668. doi: 10.1016/j.xcrm.2024.101668 
• “Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, 

whereas vaccination mainly induces anti-receptor-binding domain (RBD) 
antibodies. This imprint persists after secondary exposures wherein >60% of 
ensuing hybrid immunity derives from the original IgG pool.” 

 
123. Walls AC et al., “SARS-CoV-2 breakthrough infections elicit potent, broad, and 

durable neutralizing antibody responses,” Cell 2022, 185, 5: P872-880.E3. 
doi: 10.1016/j.cell.2022.01.011 
• “Here, we demonstrate that breakthrough infections induce serum-binding and -

neutralizing antibody responses that are markedly more potent, durable, and 
resilient to spike mutations observed in variants than those in subjects who 
received only 2 doses of vaccine.” 

 
124. Wang K et al., “Memory B cell repertoire from triple vaccinees against diverse 

SARS-CoV-2 variants,” Nature 2022, 603: 919-925. doi: 10.1038/s41586-022-
04466-x 
• “Here we examined whether sera from individuals who received two or three 

doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. 
The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 
95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, 
respectively. For recipients of three vaccine doses, the geometric mean 
neutralization antibody titre for Omicron was 16.5-fold lower than for the 
ancestral virus (254).” 

 
125. Wang M et al., “Original Antigenic Sin on Antibody Response in SARS-CoV-2 

Infection,” Infect. Dis. Immun. 2024, 4, 3: 132-137. doi: 
10.1097/ID9.0000000000000125 
• “OAS is a barrier to the generation of variant-specific antibodies against the 

current vaccines against rapidly evolving SARS-CoV-2. New vaccine strategies 
that promote nAb responses to mutated RBD epitopes and avoid boosting 
imprinted B cell immune responses are required in the future.” 

 
126. Wang Q et al., “Deep immunological imprinting due to the ancestral spike in the 

current bivalent COVID-19 vaccine,” Cell Rep Med. 2023, 4, 11: 101258. doi: 
10.1016/j.xcrm.2023.101258 
• “Monovalent and BA.5 bivalent mRNA vaccine boosters induced similar 

antibody responses. BA.5 breakthrough infections yielded higher neutralizing 
activity than vaccine boosters. The ancestral spike in BA.5 bivalent vaccines 
caused deep immunological imprinting. Bivalent boosters did not yield superior 
antibody responses due to immune imprinting.” 

https://doi.org/10.1016/j.xcrm.2024.101668
https://doi.org/10.1016/j.cell.2022.01.011
https://doi.org/10.1038/s41586-022-04466-x
https://doi.org/10.1038/s41586-022-04466-x
https://journals.lww.com/idi/fulltext/2024/07000/original_antigenic_sin_on_antibody_response_in.5.aspx
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127. Wang Z et al., “Ancestral SARS-CoV-2 immune imprinting persists on RBD but not 

NTD after sequential Omicron infections,” iScience, 2025, 28, 1: 111557. doi: 
10.1016/j.isci.2024.111557 
• “Plasma neutralizing antibody titers against ancestral SARS-CoV-2 and variants 

indicate that immune imprinting is not consistently induced by inactivated or 
recombinant protein vaccines. However, once robustly induced, immune 
imprinting is not countered by successive Omicron challenges.” 

 
128. Weber T et al., “Enhanced SARS-CoV-2 humoral immunity following breakthrough 

infection builds upon the preexisting memory B cell pool,” Sci. Immunol. 2023, 8, 
89. doi: 10.1126/sciimmunol.adk5845 
• “However, the SARS-CoV-2–specific memory B cell pool was significantly 

expanded only in individuals with a breakthrough infection after third dose. This 
was due to selection of pre-existing Omicron-neutralizing memory B cells that 
potently neutralized a broad range of variants that arose after initial vaccination. 
These findings demonstrate that SARS-CoV-2 immunity is imprinted during early 
antigen exposure and adapts to new variants.” 

 
129. Wei D et al., “Sequential reinfection with Omicron variants elicits broader 

neutralizing antibody profiles in booster vaccinees and reduces the duration of 
viral shedding,” J Med Virol 2023, 95, 10: e29151. doi: 10.1002/jmv.29151  
• “Sequential reinfection with Omicron variants elicits broader and high-titer 

variant-specific neutralizing antibody profiles against Omicron variants. It could 
also dampen the hyperactivation of WT-specific neutralization induced by 
previous WT-based vaccination.” 

 
130. Wheatley AK et al., “Immune imprinting and SARS-CoV-2 vaccine design,” Trend 

Immunol. 2021, 42, 11: 956-959. doi: 10.1016/j.it.2021.09.001 
• “We hypothesize that updated vaccines against SARS-CoV-2 variants might 

primarily boost ‘imprinted’ immune responses to conserved regions of the Spike 
protein to the detriment of new neutralizing responses to antigenically altered 
sites within new variants.”  

 
131. Wrynla XH et al., “Immune imprinting and vaccine interval determine antibody 

responses to monovalent XBB.1.5 COVID-19 vaccination,” Commun. Med. 2025, 5: 
182. doi: https://doi.org/10.1038/s43856-025-00898-4 
• “Our findings indicate that immune imprinting continues to a]ect humoral 

immunity elicited by the XBB.1.5 vaccine.” 
 

132. Yamamoto S et al., “Omicron BA.1 neutralizing antibody response following Delta 
breakthrough infection compared with booster vaccination of BNT162b2,” BMC 
Infect. Dis. 2023, 23, 282. doi: https://doi.org/10.1186/s12879-023-08272-2 

https://doi.org/10.1016/j.isci.2024.111557
https://doi.org/10.1126/sciimmunol.adk5845
https://doi.org/10.1002/jmv.29151
https://doi.org/10.1016/j.it.2021.09.001
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• “Breakthrough infection cases showed marked increases in NAb titers against 
Wild-type (4.1-fold) and Delta (5.5-fold), and 64% had detectable NAb against 
Omicron BA.1 at follow-up, although the NAb against Omicron after 
breakthrough infection was 6.7- and 5.2-fold lower than Wild-type and Delta, 
respectively. The increase was apparent only in symptomatic cases and as high 
as in the third vaccine recipients…” 

 
133. Yang Y et al., “Comparative neutralization profiles of naive and breakthrough 

infections with Delta, Omicron BA.1 and BA.2 variants of SARS-CoV-2,” Signal 
Transduct Target Ther 2022, 7: 316. doi: 10.1038/s41392-022-01166-w 
• “Our results for the naive and breakthrough infections with Delta and BA.1 

variants showed that limited cross-neutralizing responses were induced, 
especially for the currently dominant BA.4/5 variant. This is consistent with 
previous findings that vaccination with BA.1 specific mRNA vaccine alone or 
infection with BA.1 provided poor cross-protection, and that BA.4/5 variant 
could significantly escape the immune response induced by BA.1 breakthrough 
infection. These observations might result from that BA.1 breakthrough infection 
predominantly recalls humoral immune memory against the WT SARS-CoV-2 
spike protein…” 

 
134. Yao D et al., “Antibody Responses in SARS-CoV-2-Exposed and/or Vaccinated 

Individuals Target Conserved Epitopes from Multiple CoV-2 Antigens,” Int. J. Mol. 
Sci. 2024, 25, 18: 9814. doi: https://doi.org/10.3390/ijms25189814 
• “The majority of the current vaccine e]orts against SARS-CoV-2 are limited by 

targeting the S-protein; however, it is important to consider N and M proteins as 
potential targets that will allow us to establish cross-reactive responses. Our 
results demonstrate that mRNA-vaccinated, AstraZeneca-vaccinated, and 
unvaccinated donors generate N- and M-specific IgG antibody titers. However, 
within the vaccinated groups, those with known COVID-19 infections showed 
significantly higher N-specific IgG titer.” 

 
135. Yisimayi A et al. “Repeated Omicron exposures override ancestral SARS-CoV-2 

immune imprinting,” Nature 2024, 625: 148-156. doi: 10.1038/s41586-023-06753-7 
• “… immune imprinting induced by vaccination based on the ancestral (hereafter 

referred to as WT) strain would compromise the antibody response to Omicron-
based boosters… in humans, repeated Omicron infections could alleviate WT 
vaccination-induced immune imprinting and generate broad neutralization 
responses in both plasma and nasal mucosa.”  

 
136. Zelm MCV, “Immune memory to SARS-CoV-2 Omicron BA.1 breakthrough 

infections: To change the vaccine or not?” Sci. Immunol. 2022, 7, 74. doi: 
10.1126/sciimmunol.abq5901 

https://doi.org/10.1038/s41392-022-01166-w
https://doi.org/10.3390/ijms25189814
https://doi.org/10.1038/s41586-023-06753-7
https://doi.org/10.1126/sciimmunol.abq5901


• “Analysis of memory B cell responses to Spike antigen after Omicron BA.1 
breakthrough infections suggests that ‘original antigenic sin’ is in play.” 

 
137. Zhang L et al., “Neutralisation sensitivity of SARS-CoV-2 lineages EG.5.1 and 

XBB.2.3,” Lancet Infect Dis. 2023, 23, 10: e391 - e392. doi: 10.1016/S1473-
3099(23)00547-9 
• “Finally, we investigated neutralisation by plasma from quadruple vaccinated 

people collected 2 months (cohort one) or 4–8 (cohort two) months after 
vaccination, or from people who were vaccinated three to four times with 
breakthrough infection (cohort three). Particles bearing XBB S proteins were 
generally less well neutralised as compared with B.1pp (15–194-fold reduction). 
No major di]erences were observed between neutralisation of XBB.1.5pp, 
XBB.1.16pp, and XBB.2.3pp. However, it is noteworthy that EG.5.1pp evaded 
neutralisation by plasma collected for cohorts one and three with higher 
e]iciency than XBB.2.3pp, XBB.1.5pp, and XBB.1.16pp.” 

 
138. Zhou Z et al., “Immune Imprinting and Implications for COVID-19,” 

Vaccines 2023, 11, 4: 875. doi: https://doi.org/10.3390/vaccines11040875 
• “It is plausible that imprinted memory B cells induced by the original mRNA 

vaccine dominate the response to the booster vaccine. Thus, based on the 
small-scale preclinical study, at least in the short term, boosting with Omicron-
mRNA vaccine has not yet presented big advantage over the original mRNA 
vaccine regarding the induction of protective NAbs against variant as well as 
control of viral replication after challenge, and immune imprinting seemingly 
involved in damping the B cell response to variant epitopes.” 

 
139. Zhu A et al., “Antigenic characterization of SARS-CoV-2 Omicron subvariants 

XBB.1.5, BQ.1, BQ.1.1, BF.7 and BA.2.75.2,” Signal Transduct Target Ther 2023 8: 
125. doi: https://doi.org/10.1038/s41392-023-01391-x  
• “Similar trends were observed for both vaccine- and infection-induced plasma, 

regardless of the vaccination status, enhanced neutralization resistance of 
SARS-CoV-2 Omicron subvariants BF.7, BQ.1, BQ.1.1, BA.2.75.2, XBB and 
XBB.1.5 was observed when compared with their parent BA.2 and BA.4/5. 
Multiple vaccination strategies… failed to elicit high neutralizing antibody titer 
against the newly emerged Omicron subvariant...” 

 
140. Zuo F et al., “Heterologous inactivated virus/mRNA vaccination response to BF.7, 

BQ.1.1, and XBB.1,” Lancet Reg Health West Pac. 2023, 33: 100762. 
doi: 10.1016/j.lanwpc.2023.100762 
• “Due to humoral immune imprinting… the bivalent vaccine booster and hybrid 

immunity may not provide su]icient protection against emerging Omicron 
subvariants.” 
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VI. SARS-CoV2 vaccine and viral variant research library 
 
Compiled by Dr. Steven Hatfill, MD, MMed, Erik Sass, et al.  
 
Last updated July 1, 2025. Corresponding author: eriksass@gmail.com  
 
In addition to the pathogenicity, distribution, and long persistence of the “vaccine”-
produced spike protein, a growing body of research links COVID “vaccination” to the 
evolution of vaccine-resistant viral variants. The following collection of (n=70) peer-
reviewed papers suggests the “vaccines” applied strong selective pressure to the fast-
mutating SARS-CoV2 virus, quickly giving rise to “vaccine”-resistant variants. It is 
noteworthy that variants emerged in temporal and geographic proximity to “vaccine” 
clinical trials or mass “vaccination”: 
 

1. The Alpha variant was first identified in the county of Kent in southeast England in 
November 2020. Phase I/II clinical trials for AstraZeneca’s AZD1222 (ChAdOx1 
nCoV-19) adenovector “vaccine” enrolled over 1,000 subjects in southern England in 
April 2020, and thousands more in the phase III trial, May-December 2020. 
 

2. The Delta variant was first identified in Maharashtra state, India, in October 2020. 
Phase II/III clinical trials for the Covidshield adenovector “vaccine” based on 
AstraZeneca’s AZD1222 enrolled 1,600 subjects at 14 hospital centers, including 
eight in Maharashtra state, from July-October 2020.  

 
3. The Omicron variant was first identified in Gauteng, South Africa, in November 

2021, following an intense provincial “vaccination” campaign from August-October. 
 
On this note, public health officials have warned that “chasing variants” is likely futile:  
 

• In January 2023, Dr. Peter Marks, director of FDA’s Center for Biologics Evaluation 
and Research, wrote: “Continuing along the current path of…  variant-specific 
vaccine boosters is inadequate as a long-term strategy for addressing COVID-19... 
Simply updating the existing vaccine constructs with new variant sequences or even 
making trivalent or quadrivalent vaccines… is not likely to provide the depth and 
breadth of protection needed to interrupt viral transmission…” 

 
• FDA Vaccines and Related Biological Products Advisory Committee (VRBPAC) 

member Dr. Paul O]it told Time: “The experience of the past year has taught us that 
chasing these Omicron variants with a bivalent vaccine is a losing game.”  

 
This compilation originated with Dr. Hatfill’s contribution to TOXIC SHOT: Facing the 
Dangers of the COVID "Vaccines" (Chapter 5: Debunking CDC’s Bad Science) 
 
 

https://www.oxfordmartin.ox.ac.uk/news/alpha-variant-super-seeding-uk
https://www.astrazeneca.com/media-centre/press-releases/2020/astrazeneca-advances-response-to-global-covid-19-challenge-as-it-receives-first-commitments-for-oxfords-potential-new-vaccine.html
https://www.thehindu.com/sci-tech/health/the-story-of-how-a-mystifying-novel-coronavirus-variant-delta-has-india-and-the-globe-in-its-grip/article36772942.ece
https://indianexpress.com/article/cities/mumbai/mumbai-kem-to-start-screening-participants-for-vaccine-trial-from-today-6606776/
https://www.cnn.com/2021/12/02/world/south-africa-omicron-origins-covid-cmd-intl/index.html
https://www.gauteng.gov.za/News/NewsDetails/%7B82F34738-68E6-4ADD-8FBF-02C3CC0BAB68%7D
https://jamanetwork.com/journals/jama/fullarticle/2799600
https://time.com/6246525/bivalent-booster-not-very-effective-paul-offit/
https://www.amazon.com/Toxic-Shot-Facing-Dangers-Vaccines/dp/B0D8FZC157/
https://www.amazon.com/Toxic-Shot-Facing-Dangers-Vaccines/dp/B0D8FZC157/


ANNOTATED REFERENCES (n=70) 
 

1. Ahmed MN et al., “The impact of pre-existing immunity on the emergence of within-
host immune-escape mutations in Omicron lineages,” J. Gen. Virol. 2025, 106, 5. 
doi: https://doi.org/10.1099/jgv.0.002108 
• “Non-lineage mutations (39, 33 and 25 in BA.2*, BA.4* and BA.5* lineages, 

respectively) were detected, some showing higher incidence in vaccinated 
individuals. Six mutations detected at sub-consensus levels at antigenic sites 
suggest increased immune pressure on the spike protein in vaccinated 
individuals. Four high-prevalence antigenic mutations, absent from global 
GISAID sequences, were identified. Although within-host diversity did not 
significantly di]er between vaccination statuses, detected mutations suggest 
that vaccine-induced immunity may influence within-host mutation patterns.” 

 
2. Al-Khatib HA et al., “Comparative analysis of within-host diversity among vaccinated 

COVID-19 patients infected with di]erent SARS-CoV-2 variants,” iScience, 2022, 25, 
11: 105438. doi: https://doi.org/10.1016/j.isci.2022.105438 
• “Overall, the relatively higher intra-host diversity among vaccinated individuals 

and the detection of immune-escape mutations, despite being rare, suggest a 
potential vaccine-induced immune pressure in vaccinated individuals.” 

 
3. Atlani-Duault L et al., “Immune evasion means we need a new COVID-19 social 

contract,” Lancet Public Health 2021, 6, 4: E199-E200. doi: 10.1016/S2468-
2667(21)00036-0  
• “… the dynamics of natural or vaccinal collective immunity in the regions where 

these variants emerged might have placed substantial pressure on the viral 
ecosystem, facilitating the emergence of a variant with enhanced 
transmissibility… This virological game changer has numerous consequences, 
not only for vaccines and treatment, but also for prevention and control 
strategies. The fervently awaited end of this global health crisis might be 
continually postponed, as new variants emerge and immune evasion reduces 
vaccination e]ectiveness in the short and medium term. Hence, it is time to 
abandon fear-based approaches based on seemingly haphazard stop-start 
generalised confinement as the main response to the pandemic; approaches 
which expect citizens to wait patiently until intensive care units are re-enforced, 
full vaccination is achieved, and herd immunity is reached.” 

 
4. Berkhout B and E Herrera-Carrillo, “SARS-CoV-2 Evolution: On the Sudden 

Appearance of the Omicron Variant,” J. Virol. 2022, 96, 7. doi: 
https://doi.org/10.1128/jvi.00090-22 
• “The most compelling evidence for this scenario of regular Darwinian evolution 

actually comes from inspection of the genetic changes, which reveals a 
profound preference for mutations that change the amino acid composition of 
the spike protein: 30 nonsilent changes versus 1 silent mutation.” 

https://doi.org/10.1099/jgv.0.002108
https://doi.org/10.1016/j.isci.2022.105438
https://doi.org/10.1016/S2468-2667(21)00036-0
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5. Brand M and Can Kesmir, “Evolution of SARS-CoV-2-specific CD4+ T cell epitopes,” 

Immunogent. 2023, 75: 283-293. doi: https://doi.org/10.1007/s00251-023-01295-8 
• “In this study, we aim to study spike (CD4+) T cell epitopes in silico and 

investigate the e]ect of vaccine selection pressure on epitope conservation and 
mutations in VOCs… we demonstrated in silico that selection induced by 
vaccination worldwide has marginal e]ects on SARS-CoV-2 spike-specific CD4 T 
cell responses, while this might be not at all the case for B cell 
responses. Therefore, it might be worthwhile to consider inclusion of other less 
mutating SARS-CoV-2 proteins such as ORF3, NSP3, and the N protein in a 
future vaccine.”  

 
6. Brandolini M et al., “Omicron Sub-Lineage BA.5 and Recombinant XBB Evasion from 

Antibody Neutralisation in BNT162b2 Vaccine Recipients,” Microorganisms 2023, 
11, 1: 191. doi: https://doi.org/10.3390/microorganisms11010191 
• “These evolutionary characteristics have prompted intensively debated 

questions and speculations, primarily regarding how vaccines will contribute to 
the emergence of new variants. Moreover, as many vaccines are based on the 
ancestral Spike protein gene sequence, they elicit a relatively ‘narrow-spectrum’ 
immune response, which can be easily and rapidly eroded by viral evolution. In 
fact, there is emerging evidence that the high mutation rate of the S gene 
constitutes a breeding ground for immune escape mechanisms, reducing the 
neutralising potential of antibodies produced in vaccinated subjects.” 

 
7. Bushman M et al., “Population impact of SARS-CoV-2 variants with enhanced 

transmissibility and/or partial immune escape,” Cell 2021, 184, 26: P6229-
6242.E18. doi: 10.1016/j.cell.2021.11.026 
• “Here, we use a mathematical model to simulate the dynamics of wild-type and 

variant strains of SARS-CoV-2 in the context of vaccine rollout and 
nonpharmaceutical interventions. We show that variants with enhanced 
transmissibility frequently increase epidemic severity, whereas those with 
partial immune escape either fail to spread widely or primarily cause 
reinfections and breakthrough infections. However, when these phenotypes are 
combined, a variant can continue spreading even as immunity builds up in the 
population, limiting the impact of vaccination and exacerbating the epidemic.” 

 
8. Cao Y et al., “Imprinted SARS-CoV-2 humoral immunity induces convergent 

Omicron RBD evolution,” Nature 2023, 614: 521–529. doi: 
https://doi.org/10.1038/s41586-022-05644-7 
• “In this work, we showed that due to immune imprinting, our humoral immune 

repertoire is not e]ectively diversified by infection with new Omicron variants. 
The immune pressure on the RBD becomes increasingly concentrated and 
promotes convergent evolution, explaining the observed sudden acceleration of 
SARS-CoV-2 RBD evolution and the convergence pattern. Although this study 

https://doi.org/10.1007/s00251-023-01295-8
https://doi.org/10.3390/microorganisms11010191
https://doi.org/10.1016/j.cell.2021.11.026
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only examines inactivated vaccines, immune imprinting is also observed in 
those receiving mRNA vaccines.” 

 
9. Carabelli AM et al., “SARS-CoV-2 variant biology: immune escape, transmission and 

fitness,” Nat Rev Microbiol 2023, 21, 162–177. doi: 10.1038/s41579-022-00841-7 
• “The increased virus fitness associated with VOCs is the result of a complex 

interplay of virus biology in the context of changing human immunity due to both 
vaccination and prior infection.” 

 
10. Chaguza C et al., “Rapid emergence of SARS-CoV-2 Omicron variant is associated 

with an infection advantage over Delta in vaccinated persons,” Clin. Transl. Rep. 
2022, 3, 5: P325-334.E4. doi:  10.1016/j.medj.2022.03.010 
• “As population immunity to SARS-CoV-2 increases through infections and 

vaccination, selection for variants that are partially resistant to the immune 
response, in particular neutralizing antibodies, should also increase… We 
hypothesized that the rapid emergence and spread of the SARS-CoV-2 Omicron 
variant was partly due to its increased ability to evade immunity from prior 
infection and/or vaccination. Using a study population seeking outpatient testing 
when Omicron and Delta were overall relatively equal among infections, we 
found that Omicron has a relatively higher propensity to cause infections in 
COVID-19-vaccinated persons.” 

 
11. Chang MR et al., “Analysis of a SARS-CoV-2 convalescent cohort identified a 

common strategy for escape of vaccine-induced anti-RBD antibodies by Beta and 
Omicron variants,” eBioMedicine 2022, 80: 104025. doi: 
10.1016/j.ebiom.2022.104025 
• “Structural analysis of the Beta and Omicron RBDs reveal a shared immune 

escape strategy involving residues K417-E484-N501 that is exploited by these 
variants of concern… Through mutations of the K417-E484-N501 triad, SARS-
CoV-2 has evolved to evade neutralization by the class I/II anti-RBD antibody 
fraction of hybrid immunity plasma as the polyclonal antibody response post-
vaccination shows limitations in the ability to solve the structural requirements 
to bind the mutant RBDs.” 

 
12. Cocherie T et al., “Epidemiology and Characteristics of SARS-CoV-2 Variants of 

Concern: The Impacts of the Spike Mutations,” Microorganisms 2023, 11, 1: 30. doi: 
https://doi.org/10.3390/microorganisms11010030 
• “Following the spread of lineage B.1, new lineages emerged in a context of 

selection pressure related to the extension of vaccination and post-infectious 
immunization. These lineages have each selected specific sets of mutations, in 
an asynchronous and geographically isolated manner, which supports the 
hypothesis of a convergent antigenic evolution, reinforced by the discovery of 
some of their mutations in independent lineages.” 
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13. Collier DA et al., “Sensitivity of SARS-CoV-2 B.1.1.7 to MRNA vaccine-elicited 
antibodies,” Nature 2021, 593: 136–141. doi:  10.1038/s41586-021-03412-7 
• “Taken together, the presence of multiple escape mutations in the NTD is 

supportive of the hypothesis that this region of the spike, in addition to the RBM, 
is also under immune pressure… Our data suggest that vaccine escape by the 
virus of current spike-directed vaccines designed against the Wuhan-1 strain will 
be inevitable…” 

 
14. Day T et al., “Pathogen evolution during vaccination campaigns,” PLoS Biol 2022, 20, 

9: e3001804. doi: https://doi.org/10.1371/journal.pbio.3001804 
• “…vaccine-driven evolution has tended to occur in other pathogens when either 

the benefits of prophylaxis are small (e.g., the vaccine does not su]iciently 
suppress pathogen replication below transmissible levels) or when they target a 
small number of pathogen epitopes. Data increasingly suggest that at least the 
first of these is true for SARS-CoV-2 and currently deployed vaccines.” 

 
15. Dijokaite-Guraliuc A et al., “Rapid escape of new SARS-CoV-2 Omicron variants 

from BA.2-directed antibody responses,” Cell Rep. 2023, 42, 2: 112271. doi: 
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